Страницы помеченные меткой 'нейрон'.
Нервная клетка
НЕЙРОН – это отдельная нервная клетка, строительный блок мозга. Она передает нервные импульсы по единственному длинному волокну (аксону) и получает их по многочисленным коротким волокнам (дендритам) (Ч. Стивенс). Хотя нейроны, или нервные клетки, имеют те же самые гены, то же общее строение и тот же биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функции, скажем, печени. Важными особенностями нейронов являются характерная форма, способность наружной мембраны генерировать нервные импульсы и наличие уникальной структуры – синапса, служащего для передачи информации от одного нейрона другому. Полагают, что мозг человека состоит из 1011 нейронов: это приблизительно столько
Дегенерация и регенерация нервной ткани
Нейроглия ЦНС, шванновские клетки и глиальные клетки – сателлиты периферической нервной системы, в отличие от нервных клеток, обладают значительными пролиферативными способностями. Это обнаруживается при выявлении некоторых опухолей, например, глиом нервной системы, после ампутационных нервных рубцов, производных глии в культурах ткани (Н.Г. Хлопин, 1947). Нейроглия играет важную роль в процессах регенерации периферических и, по-видимому, центральных нервных волокон. Нейроны, как правило, не обладают способностью к размножению. При повреждении тела нервной клетки она обычно погибает и фагоцитируется микроглиальными элементами. Фагоциты (от лат. Fagos – пожирать) – клетки микроглии, которые обладают способностью поглощать погибшие части нейронов. Если повреждается (в результате перетяжки, травмы и пр.)
Открытие новых связей между мозгом и телом
Свидетельство в поддержку надежности методов Фоточтения и Прямого Обучения мы получили от Фоточитателя доктора Изи Катцева, старшего преподавателя нейропсихологии в Университете Витватерсландской Медицинской Школы (Иоганесбург, Южная Африка). Во время восстановительного периода после инсульта он провел удивительные личные исследования. Инсульт затронул первичную зрительную кору головного мозга (V1), вызвав последующую алексию. Он мог писать, но не мог прочитать ни строчки. Хотя он не мог воспринимать тексты на бумаге, он был способен понимать слова, если их громко произносили по буквам, или писали пальцем на ладони. После двух с половиной месяцев пребывания в полной фрустрации, не способный даже узнать ни одной печатной буквы, он вновь обратился
Мысли о мозге. Ф. КРИК
В предыдущих статьях этого издания читатель, вероятно, видел, как мозг изучается на многих уровнях — от молекул в его синапсах до сложных форм поведения — и путем различных подходов — химического, анатомического, физиологического, эмбриологического и психологического - к нервной системе разнообразных животных, от примитивных беспозвоночных до самого человека. И все же читатель, вероятно, заметил также, что, несмотря на непрерывное накопление детальных сведений, то, как работает человеческий мозг, по-прежнему окутано глубокой тайной. Издатели "Scientific American" попросили меня как новичка в нейрофизиологии сделать некоторые общие замечания о том, как воспринимает эту проблему сравнительно посторонний наблюдатель. Я интересуюсь нейробиологией более 30 лет, но
Заболевания человеческого мозга. С. КИТИ
Они могут быть следствием наследственного нарушения обмена, сосудистого заболевания, инфекции, опухоли, травмы. При исследовании психических заболеваний важны отношения между генетическими факторами и факторами внешней среды В такой сложной структуре, как человеческий мозг, может возникнуть множество нарушений. Удивительно то, что у большинства людей мозг работает эффективно и непрерывно дольше шестидесяти лет. Это говорит о пластичности, избыточности и самовосстанавливающейся природе его механизмов. Но дело в том, что в мозгу иногда нарушается его структурная архитектоника или электрические и химические процессы. Более ста лет назад патологи уже умели обнаруживать заболевания, связанные с повреждением крупных анатомических структур мозга и возникающие в результате кровоизлияния, компрессии, смещения, воспаления,
Механизмы головного мозга, управляющие движением. Э. ЭВАРТС
Как головной и спинной мозг управляют движениями тела? Мозг не только посылает команды мышцам, но и получает по обратной связи сигналы, которые помогают ему согласовывать эти команды Одно из первых сведений, полученных более ста лет назад, об управлении движением со стороны головного мозга состояло в том, что движения тела могут быть вызваны сигналами, приходящими в спинной мозг из специальной области головного мозга - моторной зоны коры больших полушарий. Движения имеют широкий диапазон - от мышечных координации, требуемых для грубой ручной работы или быстрого перемещения всего тела, до тонких движений пальцев при хирургических операциях, выполняемых под микроскопом. Три белые «тени» на микрофотографии представляют
Центральные механизмы зрения. Д. ХЬЮБЕЛ, Т. ВИЗЕЛЬ
Путем изучения активности и пространственной организации нейронов первичной зрительной коры выявляется функциональная схема, которая может лежать в основе переработки сенсорной информации в коре Рассматриваемая как продукт эволюции кора большого мозга должна считаться одним из самых больших достижений в истории всего живого. У позвоночных, стоящих ниже млекопитающих, кора мозга едва выражена, если вообще можно говорить о ее существовании. Внезапно приобретя внушительные размеры у низших млекопитающих, она начинает доминировать в мозгу хищников и взрывоподобным образом увеличивается у приматов; у человека она почти полностью охватывает остальную часть мозга, имея тенденцию затмевать другие отделы. Степень зависимости животного от какого-то органа является показателем важности последнего, причем
Химия мозга. Л. ИВЕРСЕН
Сигналы передаются от нейрона к нейрону разными химическими медиаторами. Эти химические системы, наложенные на нейронные цепи головного мозга, добавляют к его функции еще одно измерение Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путем окисления пищевых веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают, кроме того, специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов; сюда относятся необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков, называемых нейромедиаторами. В
Развитие мозга. У. КОУЭН
В период внутриутробного развития нейроны мозга человека образуются со скоростью сотен тысяч в минуту. Одна из проблем нейробиологии состоит в том, каким образом нейроны находят свое место и формируют надлежащие связи Общие изменения мозга в процессе развития эмбриона и плода были описаны уже в прошлом столетии, однако до сих пор еще относительно мало известно о лежащих в их основе клеточных процессах, тех процессах, которые обеспечивают формирование отдельных частей мозга и их связей друг с другом. Ясно одно — это, что нервная система берет начало от пласта клеток на дорсальной поверхности развивающегося эмбриона (от нервной пластинки), что эта ткань складывается затем в
Организация мозга. У. НАУТА, М. ФЕЙРТАГ
Головной и спинной мозг млекопитающих, включая человека, состоит из нескольких миллиардов нервных клеток, причем отдельные нейроны могут быть связаны с тысячами других. Как же организована эта огромная трехмерная сеть? Мы видим два общих подхода к представлению о нейроанатомии. Первый — высокопарный: утверждается, что мозг — вместилище ума, чувств и желаний, памяти и способности учиться, и того любопытного ощущения, которое свойственно людям, — ощущения будущего. Затем мы начинаем внимательно рассматривать, как этот таинственный орган выглядит, так сказать, «во плоти». Определенные части мозга, в особенности кора больших полушарий, удивительным образом организованы; другие поражают своей кажущейся неупорядоченностью. Но даже и самые высокоупорядоченные структуры, в