Запись отмечена тегами 'нейрон - страница 15

Страницы помеченные меткой 'нейрон'.

Малые системы нейронов. Э. КЭНДЕЛ

Такие системы представляют собой элементарные единицы мозговой деятельности. Изучение простых животных, например крупного брюхоногого моллюска аплизии, показывает, что Малые системы нейронов способны к некоторым формам обучения и памяти По убеждению многих нейробиологов в конце концов будет доказано, что уникальные свойства каждого человека — способность чувствовать, думать, обучаться и помнить — заключены в строго организованных сетях синаптических взаимосвязей между нейронами головного мозга. Поскольку в человеческом мозгу исследовать эти сети трудно, важная задача нейробиологии состояла в том, чтобы создать на животных модели, пригодные для изучения того, как взаимодействующие системы нейронов формируют поведение. Нейронные сети, осуществляющие завершенные поведенческие акты, позволяют исследовать иерархию взаимосвязанных вопросов.

продолжить чтение

страницы: 1 2 3 4 5 6 7

Нейрон. Ч. СТИВЕНС

Это отдельная нервная клетка, строительный блок мозга. Она передает нервные импульсы по единственному длинному волокну (аксону) и получает их по многочисленным коротким волокнам (дендритам) Нейроны, или нервные клетки, являются строительными блоками мозга. Хотя они имеют те же самые гены, то же самое общее строение и тот же самый биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функции, скажем печени. Важными особенностями нейронов являются характерная форма, способность наружной мембраны генерировать нервные импульсы и наличие уникальной структуры, синапса, служащего для передачи информации от одного нейрона другому. Нейрон зрительной коры кошки, представленный на микрофотографии, был

продолжить чтение

страницы: 1 2 3 4 5 6

Мозг. Д. ХЬЮБЕЛ

Вступление к выпуску журнала, посвященного нейробиологии и ее центральной проблеме: как работает человеческий мозг? Несмотря на значительные достижения, этот вопрос остается одним из самых трудных в современной науке Может ли мозг понять мозг? Может ли он понять разум? Что он такое - гигантский компьютер, или какая-либо иная гигантская машина, или же нечто большее? Эти вопросы задаются постоянно, и было бы полезно избавиться от них. Утверждение, что мозг не может быть понят мозгом, аналогично афоризму, что человек не в состоянии поднять себя сам за ушки собственных сапог. Но такая аналогия не бесспорна. Несомненно, даже беглый взгляд на то, что достигнуто на пути

продолжить чтение

страницы: 1 2 3 4 5 6

Автономия и управление в мозге

Лобные доли являются инструментом и агентом контроля внутри центральной нервной системы. Может показаться, что их появление на позднем этапе эволюции должно было привести к более жесткой организации мозга. В действительности, однако, ситуация сложнее. В ходе эволюции мозга образовывались различные тенденции, которые уравновешивали друг друга. Эволюционное давление в направлении развития лобных долей было вызвано, вероятно, увеличением степеней свободы в организации мозга и грозящим потенциалом хаоса внутри него. С начала 1980-х годов функциональная организация мозга находилась в центре интенсивных научных дебатов. Рассматривались два радикально отличающихся друг от друга принципа организации. Первый принцип основывался на понятии модулярности. Как мы обсуждали ранее, модулярная система состоит

продолжить чтение

Пластичность мозга и когнитивные упражнения

Эти ранние попытки, с их смешанными результатами, основывались на предпосылке, или по крайней мере надежде, что когнитивная тренировка поможет изменить когнитивные функции. Но все радикально изменилась с появлением новых данных, — что когнитивные упражнения помогают изменить сам мозг. Кажется почти самоочевидным, что так и должно быть. Когда вы занимаетесь спортом, не только улучшаются ваши атлетические навыки, но и происходит фактический рост мускулов. В отличие от этого, отсутствие упражнений ведет не только к утрате атлетических навыков, но и к фактическому уменьшению мышечной ткани. Или другой, более важный в этой связи пример: у детеныша обезьяны сенсорная депривация порождает фактическую атрофию соответствующей мозговой ткани. Однако решающие

продолжить чтение

Rambler's Top100