Мультимодальные языковые модели: как нейросети учатся видеть и слышать
Мультимодальные языковые модели представляют собой самый прогрессивный класс нейросетевых архитектур, объединяющих способность воспринимать и обрабатывать различные типы данных одновременно - текст, изображения, аудио и видео. Это похоже на то, как наш мозг интегрирует информацию из разных органов чувств, чтобы создать полную картину мира. Как сказал философ Марсель Пруст, “Настоящее открытие не в том, чтобы увидеть новые земли, а в том, чтобы иметь новые глаза”.▍ Фундаментальные принципы мультимодальных моделей
Logit Lens & ViT model: туториал
Привет!В этом туториале разобран метод для анализа внутренних представлений "логит-линза" (Logit Lens).В результате практики по туториалу, вы:Изучите подход и концепцию Logit Lens;Реализуете Logit Lens для Visual Transformer;Познакомитесь с анализом результатов применения логит-линзы.Приступим! Как всегда, весь код будет на гитхаб — step by step.Logit Lens: о методеМетод Logit Lens был предложен на Lessworng в 2020 году на примере модели GPT-2.
Исследуем эволюцию архитектур в Computer Vision: Mind Map всех ключевых моделей
Сразу к карте? Если вы предпочитаете действовать, а не читать, вот ссылка на Mind Map . Она доступна для изучения прямо сейчас. А если хотите понять контекст и узнать больше о каждой модели — добро пожаловать под кат! Введение
Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning
In this article, I'll take you through everything you need to know about Hugging Face—what it is, how to use it, and why it's a game-changer in the ever-evolving landscape of artificial intelligence. Whether you're a seasoned data scientist or an enthusiastic beginner eager to dive into AI, the insights shared here will equip you with the knowledge to Hugging Face's full potential.What is Hugging Face?What is Hugging Face?
Соревнование VN1: чему я научился у прогнозистов
С сентября по октябрь 2024 года мне выпала честь организовать VN1 Forecasting Competition
О нейросетях и геометрии
Часть 1. Введение: почему геометрия и нейросети — это не фантастика?Вспомните, как мы в школе раз за разом рисовали треугольники, строили высоты, искали точки пересечения прямых и пытались доказать, что «углы равны». Тогда казалось, что геометрические задачи — дело либо для одарённых умов, либо для супертерпеливых людей с линейкой и транспортиром.
Топ 6 идей для ваших ML pet-проектов в 2025 году
Новый год — это идеальное время для перезагрузки и новых начинаний. Это уникальная возможность не только подвести итоги прошедшего года, но и заложить фундамент для будущих достижений. Если вы давно мечтали о собственном проекте в области машинного обучения, сейчас самое подходящее время, чтобы воплотить эту идею в жизнь.Я и сам когда‑то запустил свой собственный pet‑проект, который очень помог в моей карьере. Подробнее об этом я написал в своём telegram‑канале.