scikit-learn.

Как я сделала свой первый AI-продукт с ChatGPT и капелькой любви

В этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта.Кто я и зачем мне это было нужноМне 51 год, и я работаю тестировщицей в банке. По образованию я экономист. У меня нет особых навыков программирования. Были попытки учить Python и Java, но без практического применения. По работе немного пишу на JS для авто-тестов в Cypress фреймворке, тестирую UI и API — так что базовое понимание, как всё устроено, у меня есть.

Рынок труда ML-специалистов в 2025 году: востребованные навыки и карьерные треки

В одном из недавних интервью Марк Цукерберг заявил

Решение задачи классификации при помощи Deep Learning и классического Machine Learning

Небольшой бенчмарк (вроде этого): генерируем данные, потом тренируем на них нейросеть (DL - deep learning) и статистические модели (ML - machine learning). Оценивать результат будем по точности (Confusion Matrix) и контурному графику Decision Boundary, а также по времени тренировки. Мы классифицируем синтетические данные тремя способами (на разном количестве данных, от 1000 до 100 000 примеров):DL модель с одним слоем из 8 нейроновSupport Vector ClassifierDecision Tree Classifier

Рейтинг@Mail.ru
Rambler's Top100