retrieval augmented generation.

Как я победил в RAG Challenge: от нуля до SoTA за один конкурс

Автор - DarkBonesПредисловиеВ этом посте я расскажу про подход, благодаря которому я занял первое место в обеих призовых номинациях и в общем SotA рейтинге.Памятка по RAGRAG - это инструмент, расширяющий возможности LLM через “подключение” к ней базы знаний любого размера.Путь разработки базовой RAG системы состоит из этапов:

10 примеров и вариантов использования RAG от реальных компаний. Со схемами и пояснениями

Приходилось ли вам когда-нибудь упрекать чат-бот с LLM — к примеру, ChatGPT или Claude — в устаревшей или неточной информации?Дело в том, что, формируя ответ, крупные языковые модели (LLM) опираются на наборы данных, на которых они были обучены. Однако, поскольку их основная задача — предсказывать текст, а не извлекать факты, на их точность нельзя полагаться во всех случаях. Кроме того, обучающие датасеты обычно ограничены общедоступными данными и в некоторых областях быстро теряют актуальность.

Как выбрать embedding модель без датасета и исторических данных

ВведениеС появлением больших языковых моделей тема векторного поиска обрела новое дыхание. Компании, которые хотят внедрить архитектуру Retrieval-Augmented Generation (RAG), сталкиваются с вопросом: как выбрать эмбеддинги, которые будут работать эффективно именно с их данными?Выбор эмбеддинг-модели — это стратегически важное и долгосрочное решение, так как оно определяет качество поиска и производительность системы. Но этот выбор особенно сложно сделать на ранних этапах развития вашего проекта, когда данных для анализа ещё нет. При этом замена модели в будущем может оказаться дорогостоящей и ресурсозатратной.

Как мы прикрутили RAG для интент-классификации, или Трудности перевода на LLM-ский

И не опять, а снова — про этот ваш RAG. Многие продуктовые команды сейчас пробуют приспособить его для своих задач — и мы, команда Speech&Text в компании Домклик, не избежали этой участи. Но не (только) потому, что это модно и молодёжно — попробовать RAG‑подход нас побудила необходимость решить определённые насущные проблемы. Что же это за проблемы, как мы встраивали RAG и что из этого получилось? Если интересно узнать, то милости просим в текст :)

Рейтинг@Mail.ru
Rambler's Top100