rag.

rag.

Как технологии ИИ трансформируют работу контактного центра на Платформе Эра

В данной статье расскажем про ключевые процессы обслуживания клиентов, и смежные процессы управления — контроль качества и аналитику. Основной акцент сделаем на искусственном интеллекте. Рассмотрим также речевые технологии, вскользь коснемся классических подходов к построению автоматических сервисов.Платформа Эра — это новая информационно-коммуникационная платформа, на базе которой можно строить распределенные IP-АТС, омниканальные контакт-центры и другие корпоративные системы для обработки информационных и коммуникационных процессов.Сервисы GPT

Академия OpenAI для разработчиков: Разбор 10 лекций про API, RAG, Fine-tuning

OpenAI запустила свою Академию — десятки видеолекций. Полезно, но много. Если вы разработчик или аналитик, которому нужны технические детали и практические руководства по API, моделям и их оптимизации, смотреть всё подряд — не вариант.Я изучил доступные материалы и сделал выжим из только технических материалов. Этот гайд проведет по 10 ключевым лекциям вышедшим на сегодня, которые помогут разобраться в Function Calling, RAG, Fine-tuning, Evals и других важных темах. Мы не будем здесь касаться

Оценивание LLM в RAG на клиентских и синтетических датасетах: методология и результаты

Привет, Хабр! Меня зовут Таня, я аналитик качества в команде Базы Знаний Just AI. Наша команда занимается разработкой продукта для клиентских баз знаний на основе RAG и созданием таких баз под ключ.Одной из ключевых задач POC для наших заказчиков является оценка качества и точности ответов системы, а также выбор модели, которая обеспечит эти показатели. Чем точнее ответы, тем больше доверия к системе со стороны сотрудников/клиентов и меньше ручного труда по поиску доп.информации. 90% точности ответов — одно из основных требований большинства наших клиентов при выборе Базы Знаний

RAG: борьба с низким качеством ответов в условиях экономии памяти на GPU

Привет, Хабр! Меня зовут Саприн Семён. Я занимаюсь анализом данных и машинным обучением в компании ПГК Диджитал. Сегодня мы начинаем серию статей, в которой я расскажу о том, как мы с командой разрабатывали ИИ-помощника, а также приведу практические кейсы по улучшению точности ответов с минимальными затратами памяти графических процессоров. Как вы уже могли догадаться, наш ИИ-помощник разработан на основе RAG (Retrieval-Augmented Generation) системы. Хотя принцип работы RAG многим уже знаком и не вызывает того самого «вау», я всё же кратко напомню, как эта система работает, почему она так популярна и почему её ответам можно доверять.

Fine tuning или RAG. Что выбрать?

При разработке ИИ чатов существует два способа интеграции внешних данных: RAG хранилища и Fine tuning. Для не технаря отличия не очевидны, я столкнулся с мнением менеджера проекта, что первое это новая версия второго. Это не так. Поэтому, я сделал short summary, чтобы по существу изложить плюсы и минусы двух решенийЧто такое RAG?Языковые модели умеют запускать python/javascript функции через tool_calls. Делается такая функция, ей на вход аргумент search

Замена Langchain, как OpenAI Agents SDK справляется с глубоким поиском?

Агенты супер багованы. В своих проектах в компании мы заметили, что Langchain стал уж слишком баговым. В мультиагентных системах агенты зачастую циклятся, так как не понимают, когда они выполнили финальное действие, не вызывают друг друга когда надо, или же просто возвращают данные в битом формате JSON. Короче говоря, создать агентную систему стало не так то просто, и мы даже стали задумываться об упрощении систем, избавляясь от кучи агентов. И вот неделю назад OpenAI обновили SDK для создания агентов, а еще выкатили доступ к новым тулзам по API. Ну и я пошел тестить.

RAG без эмбеддингов для энтерпрайза (опыт ИИ-чемпионата)

Как я отказался от оверинжиниринга и переместился с 30 места на 7 в Enterprise RAG Challenge. И чего не хватило до 1 места.Сейчас облась ИИ – дикий запад. Никто не знает, как правильно решать задачи, а результаты экспериментов лежат приватными под NDA. Тем ценнее, когда кто-то делится реальным опытом с разбором деталей и подводных камней. Так что делюсь с хабром своей мартовской статьей про участие в Enterprise RAG Challenge от Рината LLM под капотомЕсли вы интересуетесь разработкой продуктов поверх LLM и RAG системами в частности, то обязательно прочитайте статью Ильи

Память 2.0: создаем ИИ-двойника нашей памяти

RAG, два, три… (как пользоваться RAG в 1С)

В библиотеке искусственного интеллекта для 1С появилась поддержка RAG (Retrieval Augmented Generation). Что такое библиотека искусственного интеллекта для 1С, что такое RAG и как этим пользоваться совместно

Галлюцинации в языковых моделях: виды, причины и способы уменьшения

Всем привет, меня зовут Алена, я являюсь ML-специалистом в SimbirSoft. В этой статье я хочу рассказать о галлюцинациях больших языковых моделей, а именно о том, как их оценить и минимизировать.СодержаниеВажность темыВиды галлюцинаций LLM Почему важно их выявлять?Причины появленияМетрики и подходы к оценке галлюцинацийСпособы минимизацииЗаключение

Рейтинг@Mail.ru
Rambler's Top100