Делимся самым большим в РФ пластом данных по онлайн-обучению с проектами по лингвистике, персонализации, педдизайну, ML
Перед Новым годом команда Михаила Sverdlove Свердлова объявила, что готова делиться обезличенными данными уроков Skyeng с внешними исследователями и стартапами. Вскоре после праздников мы поговорили с Мишей, о каких именно данных идет речь, что уже с ними делают и почему получить свой дата-сет можно, только написав ему на почту. — Если вы делитесь данными, то почему бы просто не залить датасет куда-нибудь? Самый большой корпус английского языка в России, по-моему, составляет 10 тысяч позиций. К концу января в нашей школе глобально прошло свыше 9,1 миллионов уроков — насколько знаю, большим набором именно по онлайн-образованию и урокам один-на-один обладают только китайские школы. Мы знаем, что происходило и как менялись действия учителя и ученика за все уроки, которые мы провели, у нас есть трек истории всех упражнений по ним. Это порядка 120 метрик по учителям, а также около 300 параметров по детям двух возрастных групп (4-11 и 11-18 лет) и взрослым разных возрастов, городов, статусов (например, студентам) и так далее. И это точно не все параметры, которые мы можем собирать, — кажется можно использовать в 2-3 раза больше. На таком объеме история «вот ссылка на датасет, покрутите, кто хочет» едва ли будет работать.
Простой классификатор P300 на открытых данных
Мой коллега Рафаэль Григорян eegdude недавно написал статью о том, зачем человечеству потребовалась ЭЭГ и какие значимые явления могут быть зарегистрированы в ней. Сегодня в продолжение темы нейроинтерфейсов мы используем один из открытых датасетов, записанных на игре, использующей механику P300, чтобы визуализировать сигнал ЭЭГ, посмотреть структуру вызванных потеницалов, построить основные классификаторы, оценить качество, с которым мы можем предсказать наличие такого вызыванного потенциала. Напомню, что P300 — это вызванный потенциал (ВП), специфический отклик мозга связанный с принятием решений и и различением стимулов (что он из себя представляет мы увидим ниже). Обычно он используется для построения современных BCI. Для того, чтобы заняться классификацией ЭЭГ, можно позвать друзей, написать игру про Енотов и Демонов в VR, записать собственные реакции и написать научную статью (об этом я расскажу как-нибудь в другой раз), но по счастью, учёные со всего мира уже провели некоторые эксперименты за нас и осталось только скачать данные. Разбор способа построения нейроинтерфейса на P300 с пошаговым кодом и визуализациями, а также ссылку на репозиторий можно найти под катом.