Исследователи из Оксфорда предложили принципиально новый способ обучения нейросетей
Абсолютно все нейросети, которые нас окружают, обучены с помощью одного и того же алгоритма – алгоритма обратного распространения ошибки (англ. back-propagation). Его изобрели еще в 80-х годах прошлого века ученые Дэвид Румельхарт, Джеффри Хинтон (ныне нобелевский лауреат) и Рональд Уильямс. Идея back-propagation в том, что мы сначала «прогоняем» входные данные вперёд по сети (forward pass), получаем предсказания и вычисляем их ошибку, а затем прогоняем сигнал ошибки назад по сети (backward pass), чтобы вычислить градиенты и обновить веса. Это работает хорошо и надежно, но есть нюансы
Возможно, в мозге найден эквивалент обратного распространения
Давно известно, что биологические нейроны действуют подобно битам: либо отправляют сигнал соседнему нейрону, либо не делают этого; поэтому исследователи построили модель, где роль обучающих сигналов выполняют всплески нейронной активности.