Как одиночество перестраивает мозг
Одиночество меняет мозг таким образом, что это может помешать способности доверять и устанавливать отношения с другими людьми Научно-исследовательская антарктическая станция «Ноймайер III» расположена на краю безжалостного антарктического шельфового ледника Экстрем. В период зимовки, когда температура может опускаться ниже минус 50 градусов по Цельсию, а ветер может достигать скорости более 100 км/ч, никто не может ни прибыть на станцию, ни покинуть ее. Изоляция станции необходима для метеорологических, атмосферных и геофизических научных экспериментов, проводимых на ней небольшой группой ученых, которые работают там в зимние месяцы и стойко переносят холодное одиночество.
Какой метод генерации аудио лучший? Сравнение GAN, VAE и Diffusion
В прошлой статье я затронул тему генерации звука с помощью диффузионной модели. Но какие методы существуют вообще и какой из них сейчас наиболее перспективен? Сегодня мы рассмотрим долгий путь этого направления в машинном обучении. Послушаем результаты, посмотрим метрики и просто взглянем на новые технологии, применяемые в совершенно разных нейросетях для аудиосинтеза.
Что представляет собой искусственный интеллект (ИИ)?
При содействии: Ed Burns Nicole Laskowski, старший новостной директор Linda Tucci, отраслевой редактор – Директор по информационным технологиям /ИТ-стратегии Искусственный интеллект — это имитация процессов человеческого интеллекта машинами, особенно компьютерными системами. Конкретные приложения ИИ включают экспертные системы
Как нейросеть MinD-Vis преобразует активность мозга в изображение
Расшифровка визуальной информации из активности мозга — это способ узнать больше о том, как работает зрительная система человека, и как заложить основу для создания системы, в которой люди и компьютеры могут общаться друг с другом с помощью сигналов мозга. Однако создать чёткие и точные изображения из записей мозга может быть сложно, потому что сигналы мозга сложны и часто не хватает данных для должного обучения. В этой статье мы разберём работу MinD-Vis, опубликованную Стэндфордским, Гонконгским и Сингапурским университетами в Ноябре этого года.
Как эволюция матриц цифровых камер помогает нейрофизиологам изучать эпилепсию
Источник: здесь Я люблю эволюцию, люблю наблюдать и пытаться осмыслить ее проявления в самых разных областях нашей реальности. По первоначальному образованию инженер, я, волей судьбы, с большим удовольствием и интересом занимаюсь изучением эпилепсии в аспирантуре Кёльнского Университета.
Возможно, в мозге найден эквивалент обратного распространения
Давно известно, что биологические нейроны действуют подобно битам: либо отправляют сигнал соседнему нейрону, либо не делают этого; поэтому исследователи построили модель, где роль обучающих сигналов выполняют всплески нейронной активности.
Обучение живых и «биологичная» нейронная сеть
Давайте разберемся, как же живой мозг обучается. Насколько его обучение похоже или не похоже на то, как это делают машины. Попытаемся смоделировать некоторые аспекты обучения. В машинном обучении укоренились термины обучение без учителя (англ. unsupervised — без контроля) и обучение с учителем (англ. supervised — под контролем). Обучение без учителя – это обучение по неразмеченным данным, или примерам. А обучение с учителем это обычно обучение по некоторым размеченным данным, обучение на примерах при котором результат регулируется и корректируется некоторым внешним механизмом с учётом этой самой разметки. Иногда термин «обучение без учителя» применяют в случае, когда у нас имеется некий агент, которого мы помещаем в некую среду, причём агент изначально не знает по каким правилам и законам действует среда, и без внешней помощи агент обучается взаимодействовать с этой средой. Если у агента имеется некий механизм оценки достижения цели, то это уже можно назвать термином — обучение с подкреплением. Насколько корректны и применимы эти термины к обучению живых организмов?
О том, как гениальный беспризорник и профессор пили виски и придумывали первую модель искусственного нейрона
Первая модель искусственного нейрона Мак-Каллока-Питтса Сейчас один из самых популярных инструментов искусственного интеллекта — это нейронные сети. Само название намекает на то, что речь идёт о некотором аналоге естественных нейронов и синаптических связей в мозгу. Отсюда вытекает распространённое ошибочное предположение, что нейронные сети являются точной копией своего биологического прототипа. Конечно же, это не так, а точнее не совсем так: учёные действительно работают над созданием импульсных нейронных сетей, предназначенных для максимально достоверной симуляции процессов, происходящих в нервной ткани, но обычно искусственный нейронные сети довольно сильно отличаются от своих биологических прародителей. Революция глубокого обучения произошла благодаря моделям, похожим на мозг примерно в той мере, в которой самолёты похожи на птиц. И всё-таки у истоков создания этих моделей стояли попытки учёных три четверти века назад постичь принципы работы нервной системы живых существ. Один из «дедушек» современных нейросетей — это перцептрон Розенблатта, представленный публике в конце 1950-х, но его появлению предшествовали другие, менее известные попытки описать принципы, по которым могла бы работать «думающая» машина, подобная мозгу. К ним относятся исследования Уолтера Питтса и Уоррена Мак-Каллока. Их модель, увидевшая свет в 1943-м году в статье под названием «Логическое исчисление идей, относящихся к нервной активности», была весьма новаторским изобретением. И за ней стоит довольно занятная история. Кто такие были эти товарищи, приложившие руку к созданию модели? Чопорные учёные в очках с роговой оправой или, может, аналог современных хипстеров из thinktank’ов?
Сравнение мозга с нейронной сетью
Можно встретить много критических замечаний о том, что биологический мозг или биологические нейронные сети работают совершенно не так как ныне популярные компьютерные нейронные сети. К подобным замечаниям прибегают различные специалисты, как со стороны биологов, нейрофизиологов так и со стороны специалистов по компьютерным наукам и машинному обучению, но при этом очень мало конкретных замечаний и предложений. В этой статье мы попытаемся провести анализ этой проблемы и выявить частные различия между работой биологической и компьютерной нейронной сетью, и предложить пути улучшения компьютерных нейронных сетей которые приблизят их работу к биологическому аналогу.
Протез для мозга: синхронизация искусственной и биологической нейронных сетей
Концепция протезирования, т.е. попытка замены недостающей части тела искусственным аналогом, существует уже очень давно. Первые упоминания о протезировании можно найти в записях, датируемых позднее 1500 года до н.э. И в этом нет ничего удивительного, поскольку простейшие формы протезирования действительно просты, а потому могли быть выполнены кустарно и в те далекие времена (вспомните пиратов с их крюками и деревянными ногами). Однако протезирование не ограничено лишь внешне очевидными проблемами здоровья. Все мы знаем про искусственные суставы, сосуды, клапаны и т.д. Но даже эти аугментации ничто по сравнению с протезированием части мозга, ибо мозг — самый сложный орган нашего тела. Сегодня мы с вами познакомимся с исследованием, в котором ученые из Токийского университета нашли способ заставить реальные нейроны работать в паре с искусственными. Какие технологии и методики были задействованы в разработке, насколько эффективна связь между синтетическим и биологическим, и какое применение сего открытия на практике? Об этом нам расскажет доклад ученых. Поехали.