Как эволюция матриц цифровых камер помогает нейрофизиологам изучать эпилепсию
Источник: здесь Я люблю эволюцию, люблю наблюдать и пытаться осмыслить ее проявления в самых разных областях нашей реальности. По первоначальному образованию инженер, я, волей судьбы, с большим удовольствием и интересом занимаюсь изучением эпилепсии в аспирантуре Кёльнского Университета.
Возможно, в мозге найден эквивалент обратного распространения
Давно известно, что биологические нейроны действуют подобно битам: либо отправляют сигнал соседнему нейрону, либо не делают этого; поэтому исследователи построили модель, где роль обучающих сигналов выполняют всплески нейронной активности.
Обучение живых и «биологичная» нейронная сеть
Давайте разберемся, как же живой мозг обучается. Насколько его обучение похоже или не похоже на то, как это делают машины. Попытаемся смоделировать некоторые аспекты обучения. В машинном обучении укоренились термины обучение без учителя (англ. unsupervised — без контроля) и обучение с учителем (англ. supervised — под контролем). Обучение без учителя – это обучение по неразмеченным данным, или примерам. А обучение с учителем это обычно обучение по некоторым размеченным данным, обучение на примерах при котором результат регулируется и корректируется некоторым внешним механизмом с учётом этой самой разметки. Иногда термин «обучение без учителя» применяют в случае, когда у нас имеется некий агент, которого мы помещаем в некую среду, причём агент изначально не знает по каким правилам и законам действует среда, и без внешней помощи агент обучается взаимодействовать с этой средой. Если у агента имеется некий механизм оценки достижения цели, то это уже можно назвать термином — обучение с подкреплением. Насколько корректны и применимы эти термины к обучению живых организмов?
О том, как гениальный беспризорник и профессор пили виски и придумывали первую модель искусственного нейрона
Первая модель искусственного нейрона Мак-Каллока-Питтса Сейчас один из самых популярных инструментов искусственного интеллекта — это нейронные сети. Само название намекает на то, что речь идёт о некотором аналоге естественных нейронов и синаптических связей в мозгу. Отсюда вытекает распространённое ошибочное предположение, что нейронные сети являются точной копией своего биологического прототипа. Конечно же, это не так, а точнее не совсем так: учёные действительно работают над созданием импульсных нейронных сетей, предназначенных для максимально достоверной симуляции процессов, происходящих в нервной ткани, но обычно искусственный нейронные сети довольно сильно отличаются от своих биологических прародителей. Революция глубокого обучения произошла благодаря моделям, похожим на мозг примерно в той мере, в которой самолёты похожи на птиц. И всё-таки у истоков создания этих моделей стояли попытки учёных три четверти века назад постичь принципы работы нервной системы живых существ. Один из «дедушек» современных нейросетей — это перцептрон Розенблатта, представленный публике в конце 1950-х, но его появлению предшествовали другие, менее известные попытки описать принципы, по которым могла бы работать «думающая» машина, подобная мозгу. К ним относятся исследования Уолтера Питтса и Уоррена Мак-Каллока. Их модель, увидевшая свет в 1943-м году в статье под названием «Логическое исчисление идей, относящихся к нервной активности», была весьма новаторским изобретением. И за ней стоит довольно занятная история. Кто такие были эти товарищи, приложившие руку к созданию модели? Чопорные учёные в очках с роговой оправой или, может, аналог современных хипстеров из thinktank’ов?
Сравнение мозга с нейронной сетью
Можно встретить много критических замечаний о том, что биологический мозг или биологические нейронные сети работают совершенно не так как ныне популярные компьютерные нейронные сети. К подобным замечаниям прибегают различные специалисты, как со стороны биологов, нейрофизиологов так и со стороны специалистов по компьютерным наукам и машинному обучению, но при этом очень мало конкретных замечаний и предложений. В этой статье мы попытаемся провести анализ этой проблемы и выявить частные различия между работой биологической и компьютерной нейронной сетью, и предложить пути улучшения компьютерных нейронных сетей которые приблизят их работу к биологическому аналогу.
Протез для мозга: синхронизация искусственной и биологической нейронных сетей
Концепция протезирования, т.е. попытка замены недостающей части тела искусственным аналогом, существует уже очень давно. Первые упоминания о протезировании можно найти в записях, датируемых позднее 1500 года до н.э. И в этом нет ничего удивительного, поскольку простейшие формы протезирования действительно просты, а потому могли быть выполнены кустарно и в те далекие времена (вспомните пиратов с их крюками и деревянными ногами). Однако протезирование не ограничено лишь внешне очевидными проблемами здоровья. Все мы знаем про искусственные суставы, сосуды, клапаны и т.д. Но даже эти аугментации ничто по сравнению с протезированием части мозга, ибо мозг — самый сложный орган нашего тела. Сегодня мы с вами познакомимся с исследованием, в котором ученые из Токийского университета нашли способ заставить реальные нейроны работать в паре с искусственными. Какие технологии и методики были задействованы в разработке, насколько эффективна связь между синтетическим и биологическим, и какое применение сего открытия на практике? Об этом нам расскажет доклад ученых. Поехали.
Заканчивается регистрация на международную конференцию нейротехнологий в Самаре
Уникальное для России ежегодное мероприятие, целиком посвящённое тематике нейрокомпьютерных интерфейсов, пройдёт с 3 по 5 октября 2019 года. Но регистрация для участников закончится уже 25 сентября. Международная конференция «Нейрокомпьютерный интерфейс: Наука и практика» ежегодно проходит в Самаре с 2015 года. Главным организатором традиционно выступают Самарский государственный медицинский университет и компания IT Universe, а поддержку мероприятию оказывают Отраслевой союз «Нейронет» и Правительство Самарской области. Тематика конференции отвечает одному из приоритетных направлений деятельности системы здравоохранения – разработке и внедрению новейших технологий реабилитации: помощи людям с нарушениями двигательных и когнитивных функций, восстановлении после инсультов и других нарушений мозга. Сегодня большая часть таких технологий основана на виртуальной реальности (VR). VR позволяет симулировать физический мир для отработки двигательных навыков, активации мыслительных процессов, нормализации эмоциональной сферы. С помощью различных упражнений в такой симуляции целый ряд нозологий, связанных с неврологическими нарушениями, поддаются частичной или полной реабилитации. Среди них: инсульты, парезы, параличи, рассеянный склероз и другие.
«Чувство числа» возникает из распознавания визуальных объектов
Результаты нового исследования искусственного интеллекта указывают на то, что зрительная система спонтанно создает чувство числа без предварительного опыта подсчета. У людей и животных есть «чувство числа», врожденная способность подсчитывать количество объектов в сцене. Считается, что нейронной основой этой способности являются так называемые нейроны числа, которые реагируют на определенные числа и были обнаружены в мозге человека и животных. Исследователи долго задавались вопросом, формируются ли эти нейроны числа в мозге только благодаря способности видеть — и если да, то как? Теперь группа исследователей во главе с профессором Андреасом Нидером из Института нейробиологии Университета Тюбингена изучила происхождение чувства числа, используя искусственную нейронную сеть. Результаты показывают, что чувство числа возникает спонтанно в визуальной системе без какого-либо опыта в подсчете. Исследование было опубликовано в издании Science Advances.
Искусство для IT
Наука и искусство – это необходимые сферы в жизни каждого человека, которые оказывают друг на друга большое влияние. Так с проникновением новых технологий в художественную среду возник феномен «цифровые искусства». Казалось бы, получилась новая, более совершенная форма, что еще может дать искусство, для чего оно нужно в IT-индустрии. Если вам интересно порефлексировать со мной на эту тему, продолжение под катом.
Исследование связности в мозге на основе электрофизиологических данных. Лекция в Яндексе
Раз уж идеология нейросетей в IT строилась с оглядкой на реальный прототип, о нем тоже иногда полезно вспомнить. Предлагаем посмотреть или почитать лекцию Ильи Захарова, выпускника кафедры психофизиологии факультета психологии МГУ. Илья объясняет, как можно анализировать сети в мозге, какие данные для этого нужны, какие подводные камни могут возникать при анализе, а главное — что нового позволили узнать подобные исследования. Под катом — расшифровка и большинство слайдов.