NoProp: Реальный опыт обучения без Backprop – от провала к 99% на MNIST
Всем привет! Обучение нейронных сетей с помощью обратного распространения ошибки (backpropagation) — это стандарт де‑факто. Но у него есть ограничения: память, последовательные вычисления, биологическая неправдоподобность. Недавно я наткнулся на интересную статью «NOPROP: TRAINING NEURAL NETWORKS WITHOUT BACK‑PROPAGATION OR FORWARD‑PROPAGATION» (Li, Teh, Pascanu, arXiv:2403.13 502), которая обещает обучение вообще без сквозного backprop и даже без полного прямого прохода во время обучения! Идея показалась захватывающей, и мы (я и ИИ‑ассистент Gemini) решили попробовать ее реализовать на PyTorch для MNIST.
Метрики оценки моделей нейронных сетей для чайников
Оценка моделей нейронных сетей играет ключевую роль в выборе наилучшего алгоритма для конкретной задачи. Выбор метрики должен соответствовать целям, поскольку очевидного показателя «Точность» (accuracy) обычно недостаточно. Критерии помогают определить эффективность и корректно сравнить различные подходы.Меня зовут Александр Агеев, я ML‑разработчик в SL Soft AI. В этой статье я расскажу про три задачи и методы их оценки:классификация — предсказание дискретных классов,обнаружение объектов (детекция) — локализация и классификация объектов на изображении,сегментация