ml.
Модели машинного обучения: что могут спросить на интервью
Привет, Хабр!Сегодня рассмотрим некоторые вопросы, которые могут попасться на собеседовании на ML позиции. Как KNN ведёт себя при увеличении размерности данных? Начнём с KNN (k ближайших соседей). В малых размерностях (скажем, 2–3) расстояния между точками вполне осмысленны. Но когда число признаков вырастает до 100+, всё меняется. В такой ситуации расстояния между точками начинают стремиться к равенству — словно все объекты сидят за круглым столом, и каждый от каждого отстоит примерно на одинаковом расстоянии. Это называется проклятием размерности
Как мы обучили модель прогноза ранней просрочки: логистическая регрессия vs градиентный бустинг
Всем привет! На связи дата-сайентисты стрима разработки моделей для корпоративного сегмента ВТБ — Андрей Бояренков, Иван Кондраков и Денис Дурасов.Как уже писали ранее в другой статье
Нейросети для семантической сегментации: U-Net, LinkNet, PSPNet
Всем привет! Недавно я закончил один из этапов собственного проекта, в котором я провел сравнительный анализ 3 одних из самых известных нейросетей для семантической сегментации: U-Net, LinkNet, PSPNet. Теперь я хочу поделиться со всеми, чтобы в случае, если кто-то захочет сделать что-то подобное или ему просто понадобится, то он не искал весь интернет, как я, а легко и просто все нашел. В конце главы каждый нейросети я оставил ссылки на оригинальные статьи для желающих самостоятельно все изучить (на английском). Ссылка на мой GitHub с полноценной версией всех нейросетей и main файла в конце статьи.
Кастомные loss-функции в TensorFlow-Keras и PyTorch
Привет, Хабр!Стандартные loss‑функции, такие как MSE или CrossEntropy, хороши, но часто им не хватает гибкости для сложных задач. Допустим, есть тот же проект с огромным дисбалансом классов, или хочется внедрить специфическую регуляризацию прямо в функцию потерь. Стандартный функционал тут бессилен — тут на помощь приходят кастомные loss'ы.Custom Loss Functions в TensorFlow/KerasTensorFlow/Keras радуют удобным API, но за простоту приходится платить вниманием к деталям. Focal LossFocal Loss помогает сместить фокус обучения на сложные примеры, снижая влияние легко классифицируемых данных:
Reasoning-LLM: архитектура и обзор передовых моделей
Reasoning-LLM — это большие языковые модели, нацеленные на логическое рассуждение при решении сложных задач. В отличие от обычных LLM, которые часто выдавали ответы сразу, такие модели способны «думать» пошагово — как человек, анализируя задачу и выстраивая цепочку вывода. Появление reasoning-LLM связано с тем, что традиционные LLM (например, GPT-4 или Llama 3.1) хотя и хорошо справляются с языковыми и энциклопедическими запросами, нередко ошибались в задачах, требующих сложных вычислений, планирования или логического вывода. В этой статье мы подробно разберем, как работают reasoning-LLM, их внутреннее устройство (Transformer, self-attention, механизмы «мышления»). А еще — рассмотрим передовые модели (OpenAI o1, DeepSeek R1 и Claude 3.7 Sonnet), факторы, влияющие на их точность, и дадим практические рекомендации по применению.
Десять уроков развития аппаратных ускорителей для ИИ: как эволюция TPU привела к созданию TPUv4i
В последние годы стало очевидно, что классические центральные процессоры (CPU) и видеокарты (GPU) уже не всегда поспевают за непрерывным ростом и усложнением нейронных сетей. Вместо бесконечного наращивания «универсального» железа, компании начали разрабатывать и внедрять в своих дата-центрах Domain-Specific Architecture (DSA) — аппаратные ускорители, заточенные под конкретные задачи.Google TPU (Tensor Processing Unit) — одно из первых крупных решений такого рода. Начиная с 2015 года (поколение TPUv1), Google успела вывести на рынок несколько поколений TPU для внутренних нужд: TPUv1 и TPUv2/v3, а в 2020 году — новое решение TPUv4i
Machine learning на ESP32
Распознавание жестов — это технология, которая позволяет людям взаимодействовать с устройствами без физического нажатия кнопок или сенсорных экранов. Интерпретируя жесты человека, эта технология нашла свое применение в различных потребительских устройствах, включая смартфоны и игровые консоли. В основе распознавания жестов лежат два ключевых компонента: сенсор и программный алгоритм.
Как OSA превращает пустые полки в полные корзины?
Привет, Хабр! Меня зовут Анастасия Трапезникова, и я ведущий аналитик данных в Magnit Tech. Вы когда-нибудь сталкивались с разочарованием перед пустой полкой, где должен быть ваш любимый майонез? А что если я вам скажу, что майонез в магазине есть. Помимо разочарования, это приводит еще и к потере выручке магазина.