Открываем instruct-версию YandexGPT 5 Lite
Недавно мы выложили в открытый доступ pretrain-версию модели YandexGPT 5 Lite, обученную нами с помощью технологий Яндекса и без применения каких-либо сторонних моделей. За прошедший месяц в сообществе её скачали более 15 тысяч раз, на её основе создали больше десятка квантизованных моделей и даже дообучили instruct-версии.
Все ли волки страшные: AUF или как приручить uplift?
Всем привет! Меня зовут Мельников Виктор, я работаю Junior Data Scientist в хабе Розничного Бизнеса Департамента Продвинутой Аналитики в Альфа-Банке. В этой статье я расскажу про AUF — Open Source библиотеку Альфа-Банка. Её главная задача — автоматическое решение задач uplift-моделирования.Позволяет ускорять разработку в десятки раз и убирает рутину, избавляя от привычного fit-predict. Приятным бонусом идёт полный отчёт по качеству модели, понятный как DS, так и бизнесу.Дисклеймер
Обнаружение атаки Kerberoasting с использованием машинного обучения: от теории к практике
О чем статьяПривет, Хабр! Меня зовут Алексей Синадский, я руководитель исследовательских проектов R&D-центра компании UDV Group. Мы занимаемся разработкой решений в сфере информационной безопасности с применением ML. Также мы берём на борт студентов – временно на диплом и постоянно на работу. Сегодня я расскажу про результаты дипломной работы Александра Чиркина по выявлению атаки Kerberoasting в сетевом трафике, выполненной в UDV Group.
SQL и нейросети: изучаем логику моделей через анализ и визуализацию весов
SQL — это не только про базы данных. В машинном обучении его используют для анализа весов, поиска аномалий, сравнения моделей и визуализации их логики. SQL помогает определить значимость признаков, заметить переобучение и оценить работу модели.
Как мы обучили модель прогноза ранней просрочки: логистическая регрессия vs градиентный бустинг
Всем привет! На связи дата-сайентисты стрима разработки моделей для корпоративного сегмента ВТБ — Андрей Бояренков, Иван Кондраков и Денис Дурасов.Как уже писали ранее в другой статье
Игра в имитацию: используем Python для генерации синтетических данных для ML и не только
ВведениеРучной сбор данных — это всегда боль. Он съедает время, деньги и нервы, особенно в таких областях, как медицина или финансы, где затраты могут быть космическими, а юридические барьеры — непреодолимыми. По
Разметка данных с использованием LLM
Всем привет! Меня зовут Артем Ерохин. Я работаю в X5 Tech в направлении продуктивизации ИИ. В прошлом году у меня был доклад про разметку данных с LLM. И я решил преобразовать этот доклад в статью, попутно обновив некоторые цифры и тезисы (такова уж скорость прогресса в этой области). Но для начала позволю себе несколько вводных для тех, кто всё же не слышал про разметку данных и LLM (Large Language Models или большие языковые модели). Что же такое LLM?Итак, LLM – это:Модель.
Исследуем эволюцию архитектур в Computer Vision: Mind Map всех ключевых моделей
Сразу к карте? Если вы предпочитаете действовать, а не читать, вот ссылка на Mind Map . Она доступна для изучения прямо сейчас. А если хотите понять контекст и узнать больше о каждой модели — добро пожаловать под кат! Введение
AI Engineering vs ML Engineering: Как фундаментальные модели меняют подход к разработке
В эпоху, когда ИИ проникает в каждый сектор, понимание различий между AI Engineering и ML Engineering становится ключевым для выбора стратегии разработки. Книга AI Engineering: Building Applications with Foundation Models ярко иллюстрирует, как фундаментальные модели (foundation models) переворачивают традиционные подходы. Вот что важно знать.Почему сегодня AI Engineering вытесняет ML Engineering?Демократизация доступа к ИИ— Раньше: Создание ML‑моделей требовало месяцев работы с raw data, обучения архитектур и настройки гиперпараметров. Например, обучение GPT-3 потребовало 3,5 тыс. GPU‑лет.— Сейчас