К вопросу о возможном самообразовании интеллектуальной квазибиологической системы
В известной работе Емельянова-Ярославского Л.Б. «Интеллектуальная квазибиологическая система. Индуктивный автомат» (М., Наука, 1990) была предложена модель взаимодействия нейронов, образующих новые управляющие связи с формированием сети взаимодействий за счет добавления нового свойства, путем изменения функционального состояния нейронов (возбуждения) в зависимости от необходимости получения дополнительных энергетических ресурсов, с последующим использованием этих управляющих взаимодействий для получения общего свойства активности сети — системы управления ресурсами. Гипотетическое допущение о необходимом притоке энергии и его последующем межнейронном перераспределении, потребовалось в качестве обоснования идеи возникновения и постоянного обновления импульсной нейронной индуктивности для поддержания активности нейросети. Очевидно автором модели так было понято, как могли бы работать нейронные механизмы живого протомозга на ранних эволюционных этапах. Также предполагалось, что в дальнейшем происходила самосборка активных сетей управления ресурсами в укрупненные нейронные ансамбли с последующим наращиванием их функционала и формирования интеллекта.
Сколько информации за жизнь воспринимает человек
Книги, ТВ, Интернет … – нас окружает информация, «тонны» информации. Вы когда-нибудь задумывались над тем, сколько информации мы воспринимаем за свою жизнь? Мне этот вопрос показался очень интересным, и я решил его прогуглить. Как и ожидалось, вменяемого ответа найти не удалось, поэтому пришлось браться за дело основательно с привлечением умных книжек и научных статей. В итоге получилось целое исследование, ходом и результатами которого я и хочу с вами поделиться.
Модель машинного обучения восстановила изображения, которые видел человек
Исследователи использовали модель машинного обучения Brain2pix для преобразования сканов изображений мозга в изображения. Модель успешно восстановила увиденные человеком сцены путем анализа его мозговой активности.
О том, как гениальный беспризорник и профессор пили виски и придумывали первую модель искусственного нейрона
Первая модель искусственного нейрона Мак-Каллока-Питтса Сейчас один из самых популярных инструментов искусственного интеллекта — это нейронные сети. Само название намекает на то, что речь идёт о некотором аналоге естественных нейронов и синаптических связей в мозгу. Отсюда вытекает распространённое ошибочное предположение, что нейронные сети являются точной копией своего биологического прототипа. Конечно же, это не так, а точнее не совсем так: учёные действительно работают над созданием импульсных нейронных сетей, предназначенных для максимально достоверной симуляции процессов, происходящих в нервной ткани, но обычно искусственный нейронные сети довольно сильно отличаются от своих биологических прародителей. Революция глубокого обучения произошла благодаря моделям, похожим на мозг примерно в той мере, в которой самолёты похожи на птиц. И всё-таки у истоков создания этих моделей стояли попытки учёных три четверти века назад постичь принципы работы нервной системы живых существ. Один из «дедушек» современных нейросетей — это перцептрон Розенблатта, представленный публике в конце 1950-х, но его появлению предшествовали другие, менее известные попытки описать принципы, по которым могла бы работать «думающая» машина, подобная мозгу. К ним относятся исследования Уолтера Питтса и Уоррена Мак-Каллока. Их модель, увидевшая свет в 1943-м году в статье под названием «Логическое исчисление идей, относящихся к нервной активности», была весьма новаторским изобретением. И за ней стоит довольно занятная история. Кто такие были эти товарищи, приложившие руку к созданию модели? Чопорные учёные в очках с роговой оправой или, может, аналог современных хипстеров из thinktank’ов?
Сравнение мозга с нейронной сетью
Можно встретить много критических замечаний о том, что биологический мозг или биологические нейронные сети работают совершенно не так как ныне популярные компьютерные нейронные сети. К подобным замечаниям прибегают различные специалисты, как со стороны биологов, нейрофизиологов так и со стороны специалистов по компьютерным наукам и машинному обучению, но при этом очень мало конкретных замечаний и предложений. В этой статье мы попытаемся провести анализ этой проблемы и выявить частные различия между работой биологической и компьютерной нейронной сетью, и предложить пути улучшения компьютерных нейронных сетей которые приблизят их работу к биологическому аналогу.
Искусственный интеллект и кризис теорий сознания
Данная заметка представляет собой обзор связи философии сознания и искусственного интеллекта. Она не претендует на оригинальное исследование, но автор надеется на плодотворную дискуссию и уничтожающую критику. Введение В настоящее время трудно найти тему более актуальную и быстро развивающуюся, чем искусственный интеллект. Возникающие проблемы и достигнутые результаты, затрагивая острые для многих аспекты, такие как монополия человека на разум и сознание, требуют философского исследования, например, проблема различия «сильного» и «слабого» искусственного интеллекта и, в особенности, проблема возможности создания «искусственного сознания». В данной заметки предпринимается попытка дать обзор современных взаимоотношений между философскими теориями сознания и текущим состоянием искусственного интеллекта (ИИ).
Исследователи DeepMind создали виртуальную крысу, чтобы понять, как её мозг управляет движениями
Исследователи из DeepMind и Гарвардского университета создали виртуальную модель крысы с искусственным интеллектом, и запрограммировали её на выполнение нескольких задач. Затем они использовали методы нейробиологии, чтобы понять, как искусственный мозг управляет движениями цифрового грызуна.
Интеллект — способность объекта адаптировать свое поведение к окружающей среде с целью своего сохранения (выживания)
Аннотация Весь мир только и делает, что говорит об Искусственном Интеллекте, но при этом — вот же парадокс! — определения, собственно, «интеллекта» (даже не искусственного, а вообще) — общепринятого, понятного, логично структурированного и глубокого до сих пор нет! Почему бы не взять на себя смелость — попытаться найти и предложить такое определение? Ведь определение — это фундамент, на котором выстраивается все остальное, верно? Как же мы строим ИИ, если всяк по-разному видит то, что должно лежать в основе? Поехали… Ключевые слова: интеллект, способность, свойство, объект, адаптация, поведение, окружающая среда, сохранение, выживание. Для описания существующих определений интеллекта использована статья «A Collection of Definitions of Intelligence» (S. Legg, M. Hutter. A Collection of Definitions of Intelligence (2007), arxiv.org/abs/0706.3639), цитаты из которой представлены вместе с комментариями (курсив).