Пути выявления алгоритмов при изучении работы мозга
Как уже отмечалось, при выявлении алгоритмов работы мозга возникают трудности. Какова же их природа? Попытаемся ответить на этот вопрос на основе рассмотрения конкретных примеров. Выше мы привели рассмотрение работы алгоритма при игре в "побеждает чет», «поиск в лабиринте» и др. Мы рассмотрели условия эксперимента, в котором один из игроков выучивал и использовал алгоритм игры, а другой — выполнял функцию экспериментатора, стремящегося выявить алгоритм. Воспользуемся этой игрой для дальнейшего рассмотрения возможных путей выявления алгоритмов. Представим себя в качестве исследователя, который получает большое количество данных о конкретном поведении человека, знающего и использующего алгоритм при игре «побеждает чет». Каким образом можно перейти от этих данных
Теория автоматов в системе исследований высшей нервной деятельности
С помощью методики выявления алгоритмов удалось расшифровать механизмы многих ранее недоступных для анализа явлений, например таких, как обучение, восприятие информации, формирование понятий, концепций, доказательства правдоподобия версий и др. Однако создавалось впечатление, что по мере того, как исследователи раскрывали новые алгоритмы, они все дальше и дальше уходили от решения проблем нейрофизиологии, от ответов на вопрос, как работают нервные центры человеческого мозга и сложные организации нервных клеток, каким образом в результате их совокупной деятельности возникает способность к мышлению человека. В период, предшествующий изучению алгоритмов, этот вопрос, казалось бы, решался достаточно просто. Субстратом осуществления условных рефлексов являлось формирование временных связей между нервными клетками. Задачи
Эвристическое программирование и исследование информационной деятельности
Выявление алгоритмов работы мозга не решало всех проблем моделирования интеллектуальной деятельности. Открывались возможности для раскрытия механизмов таких явлений, как обучение, прогнозирование. Однако при попытках создать кибернетические системы, активно осуществляющие интеллектуальную деятельность, возникли трудности. Жизнь человека, его деятельность определяются не только его опытом, системой знаний, но и формированием программ работы, обеспечивающих его приспособление к длительным сохраняющимся ситуациям. Например, студент, изучающий медицину, в процессе своей повседневной жизни работает в обстановке, специфической для данного института. Механизмы принятия решений, построения версий, формирования понятий используются, но они отходят на задний план, уступая место ситуационным программам деятельности, основанным на использовании выработанных понятий. Это один из основных уровней
Система знаний. Семиотическое моделирование
Трудности, возникшие при попытках создания «искусственного интеллекта», как в области использования математических методов, так и в области эвристического программирования, привели группу советских исследователей к мысли о необходимости пересмотра основных путей исследования. Сформулированная новая программа вначале была определена как программа «ситуационного управления», или «семиотическое моделирование». Мышление человека тесно связано с использованием слов, абстрактных понятий. Проблема моделирования процесса смыслового понимания текста при работе вычислительных машин не может быть решена только на основе использования математики или построения эвристических программ общего типа. Необходимо широкое введение в структуру моделей понятий, слов. Такая формулировка проблемы указывала на сходство нового направления с ранее уже осуществленными попытками в области построения
Информационные механизмы работы мозга
В результате использования описанных выше новых методов наметились пути преодоления основных трудностей, в течение многих столетий воздвигавших непреодолимые преграды к раскрытию механизмов работы мозга. Открылись возможности организации комплексных исследований, объединяющих изучение информационных систем и реализующего их функционирование нейрофизиологического субстрата. Однако по мере реализации этих возможностей стали открываться новые картины сложной организации. Выяснилось, что алгоритмы не являются основными компонентами, определяющими работу мозга. Они объединяются в более сложные организации, имеющие характер специфических информационных механизмов. Были выявлены другие компоненты, составляющие основу построения таких организаций. Далее было выяснено, что и информационные механизмы не представляют собой той основы, на которой строится сложная работа мозга. Они