RAG без эмбеддингов для энтерпрайза (опыт ИИ-чемпионата)
Как я отказался от оверинжиниринга и переместился с 30 места на 7 в Enterprise RAG Challenge. И чего не хватило до 1 места.Сейчас облась ИИ – дикий запад. Никто не знает, как правильно решать задачи, а результаты экспериментов лежат приватными под NDA. Тем ценнее, когда кто-то делится реальным опытом с разбором деталей и подводных камней. Так что делюсь с хабром своей мартовской статьей про участие в Enterprise RAG Challenge от Рината LLM под капотомЕсли вы интересуетесь разработкой продуктов поверх LLM и RAG системами в частности, то обязательно прочитайте статью Ильи
Концерт для Java с ИИ — разработка готовых к продакшен LLM приложений (часть 2)
Команда Spring АйО перевела и адаптировала доклад Томаса Витале “Concerto for Java and AI — Building Production-Ready LLM Applications”, в котором рассказывается по шагам, как усовершенствовать интерфейс приложения с помощью больших языковых моделей (LLM). В качестве примера автор доклада на глазах слушателей разрабатывает приложение-ассистент для композитора, пишущего музыку для фильмов. В первой части
Как выбрать embedding модель без датасета и исторических данных
ВведениеС появлением больших языковых моделей тема векторного поиска обрела новое дыхание. Компании, которые хотят внедрить архитектуру Retrieval-Augmented Generation (RAG), сталкиваются с вопросом: как выбрать эмбеддинги, которые будут работать эффективно именно с их данными?Выбор эмбеддинг-модели — это стратегически важное и долгосрочное решение, так как оно определяет качество поиска и производительность системы. Но этот выбор особенно сложно сделать на ранних этапах развития вашего проекта, когда данных для анализа ещё нет. При этом замена модели в будущем может оказаться дорогостоящей и ресурсозатратной.
- Оставлено в
pg_auto_embeddings — считаем эмбеддинги для текста прямо в Postgres, без экстеншенов
У вас есть PostgreSQL база, где хранится множество текстовых данных. Вы хотите использовать векторные представления (embeddings), к примеру, от OpenAI, чтобы построить систему рекомендаций, улучшенный поиск или реализовать RAG для работы с LLM. Но при этом ставить расширения (extensions) не хочется, а может, и вовсе нельзя — например, в облачных Managed PostgreSQL зачастую нет нужных прав.pg_auto_embeddings