Нейросети со льдом: как мы разрабатываем методы ИИ для повышения эффективности прогнозирования морского льда в Арктике
Привет, Хабр! Меня зовут Юлия Борисова, я младший научный сотрудник лаборатории композитного искусственного интеллекта и исследовательского центра «Сильный ИИ в промышленности». Одна из задач, которой я занимаюсь вместе с коллегами из ИТМО ― прогнозирование динамики морского льда в Арктике с помощью ИИ.Чтобы успешно осваивать арктический шельф и развивать Северный морской путь, нужны данные о ледовом покрове акватории ― например, важно знать толщину и концентрацию льда и положение кромки. Без этого сложно определить, когда открывать навигацию, на сколько месяцев планировать работу и какой бюджет на нее заложить.