Зрачковые рефлексы
В норме зрачки обоих глаз круглые и их диаметр одинаков. При снижении общей освещенности зрачок рефлекторно расширяется. Следовательно, расширение и сужение зрачка- это реакция на снижение и увеличение общей освещенности. Диаметр зрачка также зависит от расстояния до фиксируемого предмета. При переводе взгляда от дальнего предмета к ближнему зрачки сужаются. В радужной оболочке имеется два вида мышечных волокон, окружающих зрачок: кольцевые, иннервируемые парасимпатическими волокнами глазодвигательного нерва, к которым подходят нервы от ресничного узла. Радиальные мышцы иннервируются симпатическими нервами, отходящими от верхнего шейного симпатического узла. Сокращение первых вызывает сужение зрачка (миоз), сокращение вторых - расширение (мидриаз). Диаметр зрачка и зрачковые реакции – важные дигностические
Формирование изображения на сетчатке
Благодаря одновременному движению обоих глазных яблок получается четкое изображение на сетчатке. В случае нарушения содружественных движений глаз возникает косоглазие и происходит расстройство бинокулярной фиксации предмета, т.к. изображение от разных глаз на сетчатке будет занимать на ней разное место. При разглядывании предметов обоими глазами изображение попадает в идентичные участки сетчатки обоих глаз и поэтому изображение от двух глаз сливается в одно. Если же изображение попадает на разные участки сетчатки, то оно будет представляться раздвоенным. В этом легко убедиться, надавливая слегка на один глаз сбоку, в результате чего будет «двоиться» в глазах. При взгляде на любой предмет глаза совершают небольшое колебательное движение. Продолжительность отдельного
Строение глаза и движения глазных яблок
Глазное яблоко располагается в глазничной впадине лицевой части черепа. Форму глазного яблока определяет наружная оболочка глаза - склера, переходящая спереди в роговицу. За роговицей располагается хрусталик, к которому прилегает радужка. Пространство между хрусталиком и роговицей заполнено жидкостью. Это пространство называют передней камерой глаза. Глазное яблоко заполнено стекловидным телом - прозрачной массой студенистой консистенции. Схема горизонтального сечения правого глаза 1 — хрусталик; 2 — зрительная ось; 3 — центральная ямка; 4 — желтое пятно; 5 — диск зрительного нерва; 6 — зрительный нерв; 7 — сетчатка; 8
Вспомогательные образования глаза
К вспомогательным образованиям глаза относятся веки с ресницами, слезная железа, с помощью которых осуществляется увлажнение поверхности глаза и удаление инородных мелких частиц, а также мышцы, прикрепляющиеся к наружной поверхности глазного яблока, обеспечивающие его движение. Веки располагаются спереди глазного яблока. Различают верхнее и нижнее веко. Основу века составляет хрящ, с наружной поверхности он покрыт кожей, а с внутренней - конъюнктивой век. Конъюнктива покрывает внутренние поверхности век и состоит из двухслойного или многослойного цилиндрического эпителия с бокаловидными клетками, рыхлой соединительной ткани, в которой находятся сплетение лимфоцитов, а также многочисленные кровеносные сосуды. В области края роговиц конъюнктива проходит в ее эпителий. Слезный аппарат состоит из
Методы исследования сенсорных систем
Функции сенсорных систем исследуют в электрофизиологических, нейрохимических и поведенческих опытах на животных, проводят психофизиологический анализ восприятия у здорового и больного человека, а также с помощью ряда современных методов картируют мозг при разных сенсорных нагрузках. Кроме того, сенсорные функции также моделируют и протезируют. Общие принципы организации сенсорных систем Все сенсорные системы человека организованы по некоторым общим принципам. Важнейшие из них следующие: многослойность, многоканальность, наличие так называемые «сенсорных воронок», а также дифференциация систем по вертикали и по горизонтали. Многослойность сводится к наличию в каждой системе нескольких слоев нейронов, первый из которых связан с рецепторами, а последний - с нейронами моторных областей коры мозга. Это
Общие свойства сенсорных систем
Сенсорной системой называют часть нервной системы, воспринимающую внешнюю для мозга информацию, передающую ее в мозг и анализирующую ее. Сенсорная система состоит из воспринимающих элементов (рецепторов), нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые заняты переработкой и анализом этой информации. Таким образом, работа любой сенсорной системы сводится к реакции рецепторов на действие внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы, передаче их в мозг через цепи нейронов и анализу этой информации. Процесс передачи сенсорных сигналов (их часто называют сенсорными сообщениями) сопровождается их многократными преобразованиями и перекодированием на всех уровнях сенсорной системы и завершается
Развитие правого полушария головного мозга или как я учился рисовать
Сразу дискламер: я редко пишу посты на широкую аудиторию, и более правильного ресурса для этого текста в рамках моего кругозора не нашлось. Тем не менее, если кто-то найдет это интересным, значит не зря… Поехали. С чего все началось Как-то я услышал от одного человека мысль о том, чтобы заниматься бизнесом, ему приходится «выращивать в себе Мистера Хайда», типа некая альтернатива его личности способна придумать что-то такое, что не способен придумать он сам. Конечно же, он шутил, по большей части, и тогда я этому значение не придал. Вспомнил эту точную метафору лишь, когда сам решил, что мне нужно развивать креативность, умение продуктивно фантазировать, придумывать нестандартные решения.
Основы подхода к построению универсального интеллекта. Часть 1
От универсального интеллекта к сильному ИИ. Перспективы создания сильного искусственного интеллекта Область искусственного интеллекта (ИИ) принесла массу замечательных практических результатов в части автоматизации человеческой деятельности в самых разных сферах, что постепенно меняет облик нашей цивилизации. Однако конечная цель – создание по-настоящему разумных машин (сильного ИИ) до сих пор не была достигнута. В то же время, из ученых мало, кто действительно сомневается в том, что такой сильный ИИ в том или ином виде может быть создан. Если какие-то возражения и звучат, то они имеют религиозных характер, апеллирующий к наличию у человека нематериальной души. Но даже при столь радикальных воззрениях на нематериальный мир списывают лишь такие сложные концептуально феномены как свобода воли, творчество или чувства, не отрицая возможности наделения машины почти неотличимым от человека поведением. Гораздо менее однозначными являются ответы на вопросы, когда и как именно может быть создан сильный ИИ?
Механизмы переработки информации в сенсорной системе
Переработка информации в сенсорной системе осуществляется с помощью процессов возбудительного и тормозного межнейронного взаимодействия. Это взаимодействие осуществляется по горизонтали, т. е. в пределах одного нейронного слоя, и по вертикали, т. е. между нейронами соседних слоев. Возбудительное взаимодействие по горизонтали заключается в том, что аксон каждого нейрона, приходя в вышележащий слой, контактирует с нескольким нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя. В результате подобного взаимодействия формируются так называемые рецептивные проекционные поля сенсорных нейронов, играющие ключевую роль в переработке сенсорных сигналов. Совокупность рецепторов, сигналы с которых поступают на данный нейрон, называют его рецептивным полем. В пределах рецептивного поля происходит пространственная
Взаимодействие сенсорных систем
Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в ретикулярной формации. В коре мозга происходит интеграция сигналов высшего порядка. В результате множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. В особенности это свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условие для формирования «схемы мира» (или «карты мира») и непрерывной увязки, координации своей собственной «схемы тела» данного организма.