Самые ранние этапы отношения к числу у первобытных племен характеризуются тем, что дикари на глаз с удивительной быстротой и точностью определяют численность больших групп предметов. Для маленьких детей характерно такое же восприятие чисел, по словам Пиаже (который посвятил особую монографию этой проблеме), образующих «целостную форму, т. е. некоторую общую поверхность, сопровождаемую более или менее смутно осознаваемым структурным сходством (без анализа деталей)».
Идея конкретного завершенного (замкнутого) множества была основной еще и для способов обозначения чисел в древнеегипетском языке и в целом ряде других древних языков, как было установлено Э. Бенвенистом и С. Д. Кацнельсоном. Этим, между прочим, объясняется исключительно сложная система обозначения дробей, принятая в Древнем Египте, где существовали особые таблицы дробей, типа наших таблиц логарифмов. Сами обозначения дробей были связаны с идеей завершенного числа: «две части» означало по-египетски две трети, «третья часть» — часть, образующая целое вместе с «двумя частями», т. е. одна треть. Египетские таблицы разложения дробей (типа = + ) с числителем 2 на «единичные» дроби (с числителем 1), которые и были основным объектом египетских действий с дробями, интересны тем, что в них обнаруживаются наблюдения над составом целых чисел.
Для того чтобы уяснить причины, по которым долгое время могла сохраняться традиция оперирования числами как конкретными целостными формами, стоит напомнить, что и современные математики и логики, характеризуя природу числа, говорят: «каждое целое число отличается от другого целого числа характерными индивидуальными свойствами — подобно тому, как различаются между собой люди». XX век еще видел последнего крупного представителя древней индийской традиции такого отношения к числам, как к различным индивидуальностям. Исключительно одаренный математик Рамануджан, не получивший никакого систематического образования (и до своего приезда в Европу изучивший только одну книгу по математике), знал каждое число (включая и очень большие числа), о котором он думал, как своего знакомого. Ему были известны свойства чисел так, как люди знают особенности своих друзей.
Когда Рамануджан, в Англии тяжело заболевший, лежал в лондонской больнице, к нему однажды приехал его друг и соавтор, крупный английский математик Харди. Харди сказал, что номер такси, на котором он приехал, — скучный: 1729 = 7∙13∙9. На это Рамануджан возразил: «Нет Харди, нет Харди, это очень интересное число. Это — наименьшее число, которое можно представить как сумму кубов двумя разными способами: 93+103 = 13 + 123 = 1729».
Как заметил Харди в своих лекциях о Рамануджане, тот в гораздо большей степени, чем современные ему европейские математики, исходил из конкретных числовых примеров. Это особенно наглядно проявилось в его работах по проблеме разбиения чисел. В этой области Рамвнуджан получил ряд замечательных результатов, связанных с p (n) —числом разбиений натурального числа n. При поиске формулы, дающей при любом n значение р (п) с конечной ошибкой, Рамануджан изумил Хардн и другого сотрудничавшего с ним английского математика — Литлвуда. Рамануджан догадался внести в ключевое выражение для этой формулы — 1/24. По словам Литлвуда, «такую догадку нельзя назвать иначе как гениальной. Во всем этом есть что-то сверхъестественное». На протяжении своей короткой математической деятельности, оборванной ранней смертью, Рамануджан многократно угадывал приближенные выражения очень сложных функций с конечной ошибкой.
Особенности математического дара Рамануджана сказались и в том, что в полученных им формулах для бесконечных рядов общие члены ряда им не записаны. Уже имея ряд блестящих результатов, Рамануджан не представлял себе, что такое доказательство. Конкретность числовой интуиции Рамамуджана не вызывает сомнений. Кажется возможным высказать предположение, что в некоторых его математических достижениях можно видеть взлет и завершение тех возможностей, которые угадываются за египетскими действиями над дробями, с таким трудом понятыми современными математиками. Это может представить интерес и для выяснения некоторых частных проблем истории математики. Не исключено, что точные математические соотношения, предполагаемые в структуре усыпальницы в хеопсовой пирамиде, могут объясняться не развитостью геометрии у египтян, а конкретной числовой интуицией.
Можно привести пример и не математика, но исключительно одаренного современного человека, который также знал «в лицо» числа и поэтому мог запоминать на всю жизнь огромные их последовательности — С. В. Шерешевского. По его словам, «для меня 2, 4, 6, 5 — не просто цифры. Они имеют форму… 1 — это острое число, независимо от его графического изображения, это что-то законченное, твердое, 2— более плоское, четырехугольное, беловатое, бывает чуть серое…, 3 — отрезок заостренный и вращается, 4 — опять квадратное, тупое, похожее на 2, но более значительное, толстое…, 5 — полная законченность в виде конуса, башни, фундаментальное, 6 — это первая за «5», беловатая, 8 — невинное, голубовато-молочное, похожее на известь».
Нетрудно увидеть, что некоторые из повторяющихся в этом самопризнании конкретных признаков чисел объединяют те из них, которые и арифметика признает закономерно связанными друг с другом: наименьшие нечетные числа: 1 (острое) и 3 = 1 + 2 (заостренный); 2 (четырехугольное) и 4 = 22 (опять квадратное похожее на 2, но более толстое); в этой классификации, которая, как и классификационные системы дикарей, строится по нескольким перекрещивающимся признакам, 2 входит и в другую группу: 2∙1 (беловатое), 2∙3 = 6 (беловатая) и 2∙4 = 8 (голубовато-молочное, похожее на известь); объединяются 1 и 5 = 1 + 4 (законченный). Любопытно, что при этом, как в пальцевом счете и в графике палеолита, у Шерешевского (в чьей психике отмечены и другие черты, сходные с душевным складом ребенка или дикаря) 5 «было фундаментальным числом» и 6 определялось как «первая за 5».
Понятно, что при таком восприятии чисел как конкретных индивидов они должны находиться в ведении правого полушария: ведь именно оно может запоминать «впрок» сколько угодно новых лиц (в пределах своих огромных возможностей). Стоит отметить, что память Рамануджана (как и Шерешевского) изумляла всех его знавших: он помнил, в частности, все глагольные корни и все производные от них залоговые формы санскрита (для него — языка его касты, но не родного, что можно сравнить с ролью французского языка для русских дворян). Роль удивительной памяти Рамануджана в его оперировании с числами можно было бы пояснить сопоставлением с тем, как Выготский объяснял значение памяти в поведении примитивного человека. Она выполняла те функции, которые потом выделились из памяти. Знание системы операций над числами избавляет от необходимости их помнить.
Левое полушарие, в отличие от правого, для которого иероглиф неразложим на составные части, строит и анализирует хранящиеся и порождаемые в нем знаки языков (и их последовательности) как цепочки, что видно при сравнении больных с поражением левого и правого полушария. В левом полушарии совершаются логические операции над языковыми знаками, как и над числами.
Понимание чисел как языковых объектов, над которыми можно совершать такие операции и выстраивать их в соответствующие цепочки, и привело ко многим успехам математики нового времени. С подобным пониманием математических объектов связаны были и достижения математики, в частности, и те, которые сделали возможным создание вычислительных машин.
Предтечей такого направления по праву считают Лейбница, для которого универсальная математика — это «логика воображения». Такую точку зрения можно признать прямо противоположной взгляду того индейца, для которого после десяти «ничего нет».
Но ошибочным было бы предположение, что обратное понимание математики в целом (не только непрерывной) как сферы деятельности, сходной — в указанном смысле — с другими проявлениями «правого мозга», в новейшее время исчезает. Напротив, оно возрождается в весьма современном виде в математическом интуиционизме. Достаточно напомнить, что Брауэр полностью отрицал связь математики с языком (в том числе и с логическим языком, который в конечном счете интерпретируется через естественный) и требовал изучать математическое мышление, а не математический язык. Для интуиционизма характерно развитие ставшего уже традиционным сопоставления математики и музыки. В музыкальных склонностях таких математиков, как Брауэр и Вейль, можно было бы видеть психофизиологическое выражение глубоких соотношений, вскрываемых сближением интуиционизма и музыки.