Попытаемся представить себе процесс исследования какого-либо механизма, например оптической системы глаза. Начав рассмотрение с какой-либо части объекта, предположим хрусталика глаза, исследователь стремится понять функцию этого отдела, используя известные ему законы оптики. Определив функцию, в данном случае связанную, с преломлением лучей света, он устанавливает связь хрусталика с другими частями механизма, например с работой сетчатки, мышц, изменяющих форму хрусталика. На этой основе исследователь подходит к раскрытию общих принципов функционирования системы, объединяющей работу многих частей в различных режимах ее работы, в частности при адаптации глаза к интенсивности света, к восприятию предметов на различном расстоянии от глаза и т. д.
При попытках организовать подобную процедуру исследования при изучении высшей нервной деятельности возникли трудности. Спецификой работы мозга являлось то, что основные функции этой системы были связаны с переработкой информации.
Изучая процессы пищеварения, дыхания, работу печени, почек, физиолог имел дело с такими объектами, для которых было свойственно единство структурной организации и функции. Например, изучая пищеварение, биохимические процессы, лежащие в основе расщепления жиров, углеводов, удавалось создать тесное сочетание выявления новых компонентов системы с анализом решаемых ими задач, с задачами разложения сложных химических соединений на отдельные компоненты и синтезом новых специфических для организма веществ. Это имело большое значение для исследователей. Ученый, описывая новый компонент в работе системы, имел возможность сразу определить его функцию, что приводило к возможности установления связи между частями системы, раскрытия целостной организации механизма, планомерного выявления недостающих компонентов изучаемой системы.
При изучении мозга на основе изолированного применения электрофизиологических методик такие возможности комплексного исследования, опирающегося на изучение частей системы и определения их функций в связи с их ролью в целостной системе, отсутствовали.
Ученые делали попытки создать представления о функциях изучаемой системы, исходя из описания таких явлений» как обучение, память, мотивация.
Однако мы видели, что все эти явления представляют собой вторичный результат интегративной работы целого ряда алгоритмов.
Конечно, при осуществлении любого из перечисленных видов деятельности мозга имеет место работа нервных центров. Однако, поскольку алгоритмы не имеют прямого соответствия с организацией морфофизиологических систем мозга, оказывается необходимым участие многих отделов мозга. Каждый из них выполняет свою специфическую роль в комплексной работе. Но эта роль не могла быть выявлена нейрофизиологическими экспериментами. Между исследуемым процессом формирования поведения и активностью нервных структур возникает такая сложная система промежуточных информационно-структурных преобразований, что ученый лишается возможности устанавливать функции как всей системы в целом, так и ее отделов. Фактически не удавалось подойти к раскрытию механизмов работы мозга, выявить ту роль, которую играет каждый отдел, и такую специфику в организации взаимодействия нервных центров, которая могла объяснить, каким образом работа мозга в целом приводит к возникновению психических явлений. Подводя итоги экспериментальных и клинических исследований, ученые часто приходили к выводу, что в осуществлении любой психической деятельности и любого поведения принимает участие весь мозг как целостная система. Для того чтобы преодолеть возникающие трудности, ученые делали попытки глубже проанализировать строение отдельных нервных клеток, биохимические процессы, ответственные за процесс возбуждения, структуру проводящих путей, определяющих характер связей между отделами мозга. Однако чем успешнее они осуществляли детальный анализ, тем дальше уходили от раскрытия механизмов. Не удавалось подойти к выявлению тех задач, которые определяют работу мозга и его организацию. Выявляя новые факты о функционировании нервных элементов, исследователь не мог оценить их значимость в работе целостной системы. Новые факты связывались с анализом физических и химических явлений, в то время как целостные системы основывались на функционировании информационных механизмов. Выход из создавшегося положения мог быть найден только на пути организации комплексного исследования. При этом уже на первой стадии исследования должны были быть определены информационные задачи, составляющие основу работы мозга. Далее на этой основе должны быть построены целостные гипотезы о работе информационных систем. Значение всех новых фактов, получаемых в электрофизиологических и нейрохимических исследованиях, должно быть определено на основе анализа схем, отражающих работу информационных механизмов. Какие же предпосылки были уже созданы? Нейрофизиология располагала нужными методиками исследования и большим объемом накопленных фактов. Хуже обстояло дело с изучением информационных механизмов. Мы говорили об изучении алгоритмов. Возник вопрос, могут ли алгоритмы являться основой сложных форм работы мозга. Исследования указывали на то, что помимо алгоритмов решающее значение имеют более сложные целостные блоки функциональных систем. Как совместить эти две концепции?
Было важно также выяснить, нельзя ли представить работу блоков, например блока акцептора результатов действий, как определенную композицию, состоящую из простейших, определенных И. П. Павловым компонентов (рефлекс на комплексный раздражитель, условный тормоз и др.). и тем самым построить единую концепцию о работе информационных систем, или для этого нужно привлечь новые понятия, выявить какие-то дополнительные компоненты организации системы.