Построение абстрактных систем связано с преодолением серьезных трудностей. Этот процесс не может быть осуществлен на основе простого обобщения имеющихся фактов и использования сложившихся в той или иной области науки систем понятий и языка описания явлений. Так, например, на определенном этапе изучения движения небесных тел имело место непосредственное наблюдение за движением отдельных планет. Ученым в этот период времени, наверное, показалось бы странным, если бы им сказали, что успехи в развитии этой области науки будут достигнуты на основе построения абстрактной теории, которая не будет рассматривать данные о движении каждой планеты в отдельности. При этом не будут использоваться и созданные ранее понятия, например, названия планет. Однако мы знаем, что решить многие проблемы удалось благодаря построению абстракции. На основании созданной Ньютоном теории оказалось возможным вывести как следствие все выявленные ранее закономерности и сделать точный расчет траектории движения небесных тел. Конкретное исследование движения каждой планеты потеряло свое значение. Далее в результате создания Эйнштейном теории относительности была создана теория еще более общего типа.
В чем же заключалось значение учения великого советского исследователя И. П. Павлова? В том, что-он установил соотношение условного рефлекса и временной связи, или в том, что он создал экспериментальные методы, позволяющие учитывать количественную сторону процесса формирования условного/ рефлекса? Да, безусловно, это было очень важно. Однако наиболее существенным моментом, по нашему убеждению, являлось то, что он ввел элемент абстракции в изучение работы мозга. Учение И. П. Павлова позволило абстрагироваться от конкретного смыслового значения, исключить маскирующие основной процесс факторы и создать возможность изучать общие инвариантные законы и механизмы деятельности мозга, понять скрытую от непосредственного восприятия сущность явления. И так же, как это было в прошлом, в наши дни трудно понять, каким образом, изучая интеллектуальную деятельность человека, можно абстрагироваться от смысловой, содержательной стороны явления, исключить использование таких понятий, как «решил», «поставил цель», и др. Однако такой переход неизбежен для того, чтобы понять истинные механизмы работы мозга.
Следует отметить, что построение абстрактных систем не означает отход от анализа конкретных фактов. После того как на основе использования этого метода удается выявить общие законы и механизмы явления, осуществляется возврат к рассмотрению реальности. Важно увидеть проявление законов в конкретной действительности, применить их в практической деятельности человека. Так, например,, эффективность теоретической механики была доказана в результате применения выявленных общих законов к анализу движения конкретных небесных тел„ а в наши дни. — на основе расчета траекторий движения спутников.
Теория И. П. Павлова не составляет в этом отношении исключения. Ее сила и значимость определяются созданием абстрактной системы, возможностью абстрагироваться от конкретных свойств объектов. В результате удалось выявить общие законы работы мозга. Однако это не исключает необходимости рассмотрения реальных форм поведения, в которых следует показать роль и конкретное воплощение работы полученных закономерностей.
Вернемся теперь к проблеме выявления алгоритмов. Основные трудности их изучения заключались в том, что специфика частных форм поведения (внешнего проявления) приводила к маскировке лежащих в их основе алгоритмов. Естественно напрашивается вывод о том, что единственный путь преодоления этих трудностей — построение абстрактных систем, которые могли бы обеспечить представление рассматриваемых процессов и явлений (работы алгоритмов) в чистом, неискаженном виде. Вместе с тем становится очевидным, что построение такой абстрактной системы и составляет одну из существенных особенностей учения И. П. Павлова. Таким образом наметились общие проблемы в’ различных областях науки. Выявляемые в опытах правила работы мозга, например, правила формирования новой системы подкреплений, правила использования этой системы при формировании нового поведения, обладали многими свойствами, которые определяют работу алгоритмов. Эти правила оказывались детерминированными. Их сущность не зависела от того, какая именно система будет реализовывать эти правила. Совокупность правил обеспечивала формирование нового поведения в различных конкретных условиях среды, т. е. решение определенного класса задач (свойство массовости).
Появление способностей к исследовательской деятельности, обучению и формированию нового поведения можно было рассматривать как некоторое качественно новое явление, возникающее при работе совокупности правил. Таким образом, можно было говорить и о наличии свойства результативности.