Алгоритмы и работа мозга. Мозг человека и искусственный интеллект. Напалков А. В., Прагина Л. Л.. Условный рефлекс и алгоритм. - страница 5

Существенные трудности при выявлении алгоритмов объяснялись также их свойством целостности, тесно связанным с другими свойствами: массовости и результативности. Дело в том, что часто при исследовании явлений и процессов обнаружение хотя бы одного звена целостной системы уже приводит к возможности оценки его результативности. Становится понятным, что избран правильный путь исследования. Другая картина возникает при изучении алгоритмов. В данном случае обнаружение какого-либо

одного правила или одной закономерности еще не позволяет определить, как будет работать система в целом. Остается непонятным, приближает ли раскрытие этой закономерности к разгадке основной тайны явления природы, т. е. к раскрытию алгоритма, или нет. Пока не выявлен весь алгоритм, ничего нельзя сказать об эффективности самого пути исследования. Эти особенности работы алгоритма приводили к тому, что обычные методы, основанные на разделении изучаемой системы на части на последовательном детальном исследовании отдельных компонентов, а затем и их частей, оказывались малорезультативными. Нужно было каким-то образом выявить все компоненты, объединить их в целое, а потом проверять эффективность целостной системы. Только после этого можно сказать, правильно или неправильно было проведено исследование.

Возникали также трудности, связанные со спецификой алгоритма как динамической системы. Мы уже говорили о том, что алгоритм приобретает свои замечательные свойства только после того, как он реализуется на некотором физико-химическом субстрате специального типа (например, на ЭВМ). До этого алгоритм, записанный на бумаге, может казаться «мертвым», неработоспособным, т. е. никак не проявлять себя. В связи с этим до тех пор, пока исследователи не получили возможность реализовать алгоритмы работы мозга на вычислительных машинах, выявление и изучение алгоритмов оказывалось невозможным. Не было той среды, в которой можно было проверять эффективность алгоритмов. Алгоритмы функционировали в разных биологических системах, однако они были замаскированы частными проявлениями, частными свойствами Их нужно было выделить не только в «чистом», но и в «активном» виде, перевести на специальный субстрат, для того чтобы изучить и понять их свойства.

Специфику этой проблемы можно пояснить на примере, который, казалось бы, весьма далек от изучения механизмов работы мозга Речь идет о развитии микробиологии. После того как была создана концепция о том, что в основе ряда болезней лежит функционирование микроорганизмов, одной из самых актуальных задач оказалась задача выделения культуры микробов в чистом и активном виде, для того чтобы понять их свойства, цикл развития. Как известно, в этом случае пришлось создавать специальные среды для культивирования микроорганизмов типа агар-агара, мясного бульона и др. И только когда удалось воспроизвести размножение микробов в «чистом виде», оказалось возможным развитие микробиологии.

Такая же проблема выделения алгоритмов «в чистом виде» возникла при изучении мозга. Исследуя психическую деятельность человека, формирование поведения животных, ученые неизбежно сталкивались с таким большим разнообразием конкретных условий, конкретных форм поведения, что выявление общих закономерностей было невозможно.

При изучении систем условных рефлексов удалось выявить лишь отдельные закономерности. Для того чтобы изучить свойства алгоритма как целого явления, нужно было не только выделить правила, но и обеспечить некоторую среду искусственного типа, в которой алгоритмы могли бы функционировать, проявлять все свои свойства, взаимодействуя друг с другом, развиваться и, как мы увидим дальше, «размножаться». Только в таких средах можно было организовать эффективное изучение функционирования информационных механизмов. Основой для выделения алгоритмов «в чистом виде» стало использование вычислительных машин.

В дальнейшем, однако, ^оказалось продуктивным создание таких средств символического описания и таких методов преобразования символов, которые также позволили рассмотреть работу алгоритмов и информационных механизмов. Такие методы абстрактного описания имели определенные преимущества, так как с их помощью можно было более четко проследить не только закономерности функционирования, но и все этапы и детали формирования и «творческой жизни» алгоритмов.

Таким образом, использование теории алгоритмов в биологии привело к существенно новым результатам. Оказалось, что до сих пор наука не обладала эффективными методами раскрытия одного из сложнейших явлений природы — механизмов переработки информации. А между тем именно алгоритмы обеспечивали те удивительные способности, которые свойственны живым организмам. Можно было думать, что алгоритмы определяют адаптацию работы внутренних органов к новым условиям, сложное управление, позволяющее координировать работу печени, сердца, легких и других органов в единой системе, обеспечивают работу эндокринной системы. Информационные системы лежат в основе процесса индивидуального развития организма и эволюции, работы мозга. Возникло сомнение в возможностях в современных условиях решать проблему изучения переработки информации, так как отсутствуют методы проникновения в тайны работы алгоритмов,.

Описываемые проблемы, видимо, оказываются актуальными только при изучении сложных систем. Работа алгоритмов, по-видимому, «привлекалась» в процессе эволюции только в достаточно сложных условиях. Простейшие механизмы, например работа нервной системы низших животных, используют более простые принципы организации, в которых программы поведения непосредственно реализованы в структуре нервных элементов. Для объяснения такого соотношения удобно обратиться к примеру развития вычислительной техники. На первом этапе формирования вычислительных систем (арифмометров) создавались механические устройства типа системы шестеренок, которые производили сложение и умножение многозначных чисел. В таких случаях изучение организации субстрата могло привести к полному раскрытию механизмов работы системы.

Однако арифмометры не обеспечивали возможности осуществления сложных форм информационной деятельности. Развитие современной вычислительной техники началось после того, как был введен новый принцип — принцип отделения структуры программ от структуры реализующих их деятельность физических устройств. Были созданы универсальные вычислительные машины, которые обеспечивали возможности реализации и функционирования программ разного типа. Дальнейшее развитие вычислительной техники шло по линии все большего отделения информационной структуры (математического обеспечения) от физической организации компьютера. В некоторых случаях применяемые ранее методы биологии оказываются эффективными. Это и создавало в прошлом ошибочное представление об их универсальном значении.

При изучении алгоритмов биологических систем возник целый ряд новых проблем. Одна из них — проблема выявления алгоритмов, которые уже существовали в природе и использовались при работе мозга. Необходимо было также изучить процесс формирования новых алгоритмов при работе мозга, выяснить, как возникают те задачи, которые предопределяют работу алгоритмов, почему и как проявляются основные их свойства. Так, например, возникал вопрос о происхождении алгоритмов, используемых при игре в шашки, шахматы, при игре в «побеждает чет», «крестики-нолики» и т. д. Можно было предположить, что во всех этих объектах существует какая-то скрытая структура, которая недоступна простому анализу, и именно эта структура приводит к возникновению задач, решаемых при помощи алгоритма. Эти проблемы заинтересовали физиологов, философов, психологов, биологов и математиков.

страницы: 1 2 3 4 5

Rambler's Top100