Итак, нетрудно видеть, что во всех этих случаях (а они бесчисленны) говорить о достижении мобильного равновесия можно тогда, когда одновременно производятся следующие трансформации: 1) два последовательных действия приобретают способность координироваться в одно; 2) схема действия, уже существующая в интуитивном мышлении, становится обратимой; 3) одна и та же точка может быть достигнута без каких бы то ни было искажений двумя различными путями; 4) возврат в отправную точку позволяет оценить ее как тождественную самой себе; 5) одно и то же действие, повторяясь, или ничего не добавляет к самому себе, или же становится новым действием с кумулятивным результатом. В этих трансформациях нетрудно узнать транзитивную композицию, обратимость, ассоциативность и идентичность, выраженную в логической тавтологии (пункт 5), или числовую итерацию, которые характеризуют соответственно логические «группировки» и арифметические «группы».
Однако для того чтобы постичь подлинную природу «группировки» — в противоположность формулированию ее в логическом языке, — нужно предельно четко понимать, что эти различные взаимосвязанные трансформации фактически являются выражением одного и того же целостного акта — акта полной децентрации или полной конверсии мышления. Сущность сенсо-моторной схемы (восприятие и т. п.), предпонятийного символа и самой интуитивной конфигурации состоит в том} что они всегда «центрированы» на частном состоянии объекта и с частной точки зрения субъекта, а поэтому всегда свидетельствуют одновременно как об эгоцентрической ассимиляции, осуществляемой субъектом, так и о феноменалистической аккомодации к объекту. Сущность же мобильного равновесия, характеризующего «группировки», состоит, напротив, в том, что Децентрация, уже подготовленная прогрессирующими регуляциями и сочленениями интуиции, внезапно становится систематической, достигая своей границы. С этого момента мысль уже не относится больше к частным состояниям объекта, а следует за самими последовательными трансформациями со всеми их возможными отклонениями и возвратами; она не выступает более как выражение частной точки зрения субъекта, а координирует все существующие точки зрения в систему объективных взаимосвязей. Группировка, таким образом, впервые реализует равновесие между ассимиляцией объектов в действии субъекта и аккомодацией субъективных схем к модификациям объектов. Действительно, в исходной точке ассимиляция и аккомодация действуют в противоположных направлениях, чем и определяется деформирующий характер ассимиляции и феноменалистский — аккомодации. Затем ассимиляция и аккомодация мало-помалу уравновешиваются. Это происходит благодаря предвосхищениям и восстановлениям в памяти, продолжающим действия в двух направлениях и на все большие расстояния коротких предвосхищений и восстановлений в свойственных восприятию, навыку и сенсо-моторному интеллекту, вплоть до антиципирующих схем, тайных интуитивным представлением. Именно завершение этого равновесия объясняет обратимость — конечную границу сенсо-моторных и мысленных предвосхищений и восстановлений в памяти, а вместе с тем обратимую композицию — признак группировки. В самом деле, то обстоятельство, что операции сгруппированы, выражает не более чем создание совокупных условий для координации последовательных точек зрения субъекта (с возможным возвратом во времени и предвосхищением их продолжения) или одновременной координации, поддающихся восприятию или представлению модификаций объекта (в прошлом, в настоящее время или в результате последующего развития).
Операциональные группировки, образующиеся к 7 — 8 годам (иногда несколько раньше), находят завершение в структурах следующего типа. Прежде всего, они ведут к логическим операциям сериации асимметричных отношений и включения в классы (вопрос о коричневых бусинках А, которых меньше, чем деревянных бусинок В, решается к 7 годам). Отсюда открытие транзитивности, которая лежит в основе дедукции вида А = В, В = С, следовательно, Л = С; или А<В, В<С, следовательно, А<С. Кроме того, едва субъект овладевает этими аддитивными группировками, как ему тотчас же становятся понятны мультипликативные группировки в форме соответствий. Научившись осуществлять сериацию объектов, согласно отношениям А1<В1<С1…, он не будет больше испытывать трудности при сериации двух или нескольких наборов (таких, А2<В2<С2…), члены которых взаимно соответствуют друг другу: ряду бусинок, расположенных по возрастающей величине, семилетний ребенок сумеет пост в соответствие ряд палочек, и даже если все эти предметы перемешаны, он сумеет определить, какому элементу одного из рядов соответствует такой-то из другого (поскольку мультипликативный характер этой группировки не создает никаких дополнительных трудностей в осуществлении только что открытых аддитивных операций сериации).