Теория формы поставила несколько по-новому проблему отношения между интеллектом и восприятием, показав преемственность между специфическими структурами этих двух сфер. Однако для того чтобы разрешить эту проблему, учитывая сложность генетических факторов, необходимо, прежде чем прибегать к аналогиям, ведущим к возможным объяснениям, систематизировать сами различия между восприятием и интеллектом.
Перцептивная структура — это система зависимых друг от друга отношений. Идет ли речь о геометрических формах, о весе, цвете или звуках, всегда можно выразить целостность в отношениях, не нарушая при этом единства целого как такового. В таком случае, для того чтобы выявить как различия, так и сходства между перцептивными и операциональными структурами, достаточно выразить эти отношения на языке «группировки», аналогично тому, как это делают физики, когда они, формулируя термодинамические явления терминах обратимых процессов, констатируют при этом, что эти явления, в сущности, не могут быть выражены на таком языке ввиду их необратимости. Фактическое несоответствие символического языка тому, что на нем выражается, ярко подчеркивает существующие здесь различия. Для уяснения этого обстоятельства достаточно обратиться к хорошо известным геометрическим иллюзиям (варьируя имеющиеся факторы) или к фактам, вытекающим из закона Вебера, и т. д. сформулировать в терминах «группировки» все имеющиеся в данном случае отношения, а также их трансформации, вызываемые внешними модификациями.
Результаты, которые можно получить, идя этим путем, совершенно ясны. На уровне перцептивных структур не осуществляется ни одно из пяти условий «группировки». В тех же случаях, когда восприятие приближается к осуществлению этих условий, что имеет место, например, в области «константностей», предвещающих операциональное сохранение, то здесь операция заменяется простыми регуляциями, обратимыми лишь частично. Такие регуляции, следовательно, находятся на полпути между спонтанной необратимостью и операциональным регулированием.
Возьмем в качестве примера упрощенную форму иллюзии Дельбёфа: окружность А1 с радиусом в 12 мм, помещенная внутри окружности В с радиусом в 15 мм, кажется большей, чем рас, положенная изолированно окружность Аз, равная А1 . Начнем изменять внешнюю окружность В, последовательно уменьшая ее радиус с 15 до 13 мм, а затем увеличивая с 15 до 40 или 80 мм. При изменении радиуса окружности с 15 до 13 мм, а также с 15 дв 36 мм иллюзия уменьшается и совсем исчезает при радиусе В, равном 36 мм (т. е. когда диаметр А оказывается равным отрезку, заключенному между В и не осуществляется ни одно из пяти условий «группировки». В тех же случаях, когда восприятие приближается к осуществлению этих условий, что имеет место, например, в области «константностей», предвещающих операциональное сохранение, то здесь операция заменяется простыми регуляциями, обратимыми лишь частично. Такие регуляции, следовательно, находятся на полпути между спонтанной необратимостью и операциональным регулированием.
Возьмем в качестве примера упрощенную форму иллюзии Дельбёфа: окружность А1 с радиусом в 12 мм, помещенная внутри окружности В с радиусом в 15 мм, кажется большей, чем рас, положенная изолированно окружность Аз, равная А1 . Начнем изменять внешнюю окружность В, последовательно уменьшая ее радиус с 15 до 13 мм, а затем увеличивая с 15 до 40 или 80 мм. При изменении радиуса окружности с 15 до 13 мм, а также с 15 до 36 мм иллюзия уменьшается и совсем исчезает при радиусе В, равном 36 мм (т. е. когда диаметр А оказывается равным отрезку, заключенному между В и А1 ), а за этим пределом становится отрицательной (действительные размеры внутренней окружности А1 преуменьшаются).
1. Если выразить отношения, действующие в этих перцептивных трансформациях, на операциональном языке, то, прежде всего, очевидно, что их композиция не может быть аддитивной из-за отсутствия сохранения элементов системы. Впрочем, именно в этом заключается важнейшее открытие теории формы, выраженное в понятии перцептивной «целостности». Мы действительно не можем установить равенство А1 + А’ = В (где А’ обозначает промежуточную зону между А1 и В), поскольку А1 деформируется в силу того, что оно включено в В, в свою очередь В деформируется тем, что оно включает в себя А, а зона А’ в большей или меньшей степени увеличивается или уменьшается в зависимости от отношений между А1 и В. Это несохранение целостности можно доказать следующим образом. Если, взяв в качестве исходных определенные значения величин А{, А’ и В, а затем, оставив В постоянным, начать] расширять (объективно) А1, уменьшая тем самым А’, то в результате этого В будет выглядеть то меньше, чем в исходном пункте.’ (оно будет, следовательно, что-то терять в процессе трансформации), то больше (в этом случае оно нечто приобретает). Таким образом, задача сводится к тому, чтобы сформулировать эти «некомпенсированные трансформации».
2. Выразим с этой целью трансформации в терминах композиции отношений, и это даст нам возможность констатировать необратимую природу этой композиции; в другой форме эта необратимость будет выражаться в отсутствии аддитивной композиции. Обозначим увеличение сходства (по размеру) между А1 и В через увеличение различия между ними (по размеру) — через А. Эти два отношения в исходном пункте должны быть обратными по отношению друг к другу и оставаться такими в дальнейшем, т. е. + r = — d и + d = — r (где минус указывает на уменьшение сходства или различия). Начав с нулевой иллюзии (при А1 = 12 мм и 1-36 мм), мы приходим к выводу, что при увеличении объективного сходства между окружностями (при их сближении) субъект преувеличивает это сходство: восприятие, следовательно, преувеличивает сходство в процессе объективного увеличения сходства между окружностями и оставляет без должного внимания различия в ходе их объективного уменьшения. Аналогичная ситуация имеет место и при увеличении объективных различий между окружностями (в процессе увеличения различий между их радиусами); такое увеличение также преувеличивается субъектом. Таким образом, на осуществление рассматриваемых трансформаций оказывает существенное влияние недостаток компенсации. Поэтому такие трансформации мы можем выразить в следующей форме, подчеркивающей их неаддитивный с логической точки зрения характер: r> — d или d> — r.