Один из особенно эффективных методов (поскольку он позволяет наблюдать на одном животном распределение колонок по всей первичной зрительной коре) основан на явлении аксонного транспорта. Процедура сводится к инъекции в нервную ткань меченой аминокислоты. Аминокислота поглощается телом клетки, по-видимому, включается в белок и затем транспортируется по аксону к его окончаниям. Когда мы инъецировали аминокислоту в один глаз обезьяны, ганглиозные клетки сетчатки поглощали ее и транспортировали по своим аксонам — волокнам зрительного нерва. После этого мы исследовали места назначения этих волокон в латеральном коленчатом теле, покрывая срезы тканей серебряной эмульсией и проявляя ее. Оказалось, что радиоактивная метка отчетливо выделяется в трех взаимно дополняющих друг друга слоях коленчатых тел.
Однако этот метод в обычном применении не дает возможности проследить путь от терминали одного аксона через синапс в следующий нейрон и к его окончаниям, а мы хотели проследить весь путь через кору. В 1971 г. Б. Графштейн (В. Grafstein) из Медицинского колледжа Корнеллского университета показала, что после инъекции достаточно большого количества радиоактивного материала в глаз мыши часть его выходит из терминалей зрительного нерва, поглощается клетками коленчатого тела и транспортируется по их аксонам в кору. Мы подумали, что сходная инъекция в комбинации с методом радиоавтографии позволит выявить в IV слое зрительной коры окончания волокон клеток коленчатого тела, принадлежащие одному глазу.
Наша первая попытка закончилась весьма плачевно: в слое IV были видны лишь слабые тени из нескольких зерен серебра. Только после нескольких недель мы осознали, что обратившись к наблюдению под микроскопом в условиях темного поля, можно извлечь выгоду из свойства зерен серебра рассеивать свет, благодаря чему чувствительность метода возрастет. Мы позаимствовали темнопольный конденсор, и когда взглянули на наш первый слайд в микроскоп, там в слое IV во всей своей красе сияли периодические структуры, выявленные метками (см. верхний рисунок на стр. 166).
Следующим нашим шагом была попытка увидеть картину, так сказать, «в лицо», делая срезы коры параллельно поверхности. Кора обезьяны куполообразна, так что на срезе, параллельном поверхности и тангенциальном слою IV, этот слой выглядит как круг или овал, а на срезе, сделанном ниже слоя IV, его сечение представлено в виде кольца. Монтируя вместе серии таких овалов и колец из набора срезов, можно реконструировать картину на большой площади коры.
Из такой реконструкции сразу стало очевидно, что общий план организации – это чередование параллельных полос, которые представляют окончания, принадлежащие глазу, подвергшемуся инъекции, и промежутков, которые представляют другой глаз. Полосы не так регулярны, как на обоях. (Время от времени мы напоминали себе, что это все-таки биология!) Тут и там полоса, представляющая один глаз, разветвляется на две полосы или кончается тупиком в точке, где ветвится полоса другого глаза. Нерегулярности наиболее обычны вблизи центра взора и вдоль линии, представляющей горизонт. Полосы по всей видимости всегда перпендикулярны к границе между первичной зрительной корой и ее соседом – полем 18, и здесь регулярность наибольшая. Такое общее правило, по-видимому, применимо к мозгу всех макаков, хотя узоры варьируют от одного индивидуума к другому и даже у одной и той же обезьяны от одного полушария к другому.
Гипотетическая картина корковой активности, которая может быть результатом стимуляции левого глаза одним коротким отрезком горизонтальной линии, помешенным в верхнем левом квадранте поля зрения, показана цветными штрихами на схеме участка правой коры, рассматриваемой в фас. Область, в которую поступают входные сигналы от объекта в поле зрения, обведена пунктирной черной линией. Если колонки глазодоминантности и ориентационные колонки расположены так, как это здесь изображено, из всех клеток активируются те, которые оптимально реагируют на приблизительно горизонтальные стимулы, предъявляемые левому глазу.
Ширина комплекта из двух полос постоянна, около 0,8 мм, по всей первичной зрительной коре, что еще раз подчеркивает однородность коры. Опять же эта ширина прекрасно согласуется с той идеей, что в пределах одного квадратного миллиметра коры должны содержаться все механизмы, необходимые для «присмотра» за областью, размером с агрегатное поле. Два описанных выше метода — применение меченой дезоксиглюкозы и транспорт аминокислоты, имеют огромное достоинство в том отношении, что они взаимно совместимы, в связи с чем мы можем применять их одновременно, один — для картирования ориентационных полос, а другой — для выявления колонок глазодоминантности. Число препаратов мозга, исследованных к настоящему времени, слишком мало, для того чтобы можно было сделать те или иные окончательные выводы, но пока эти две системы полос кажутся совершенно независимыми; они и не параллельны, и не перпендикулярны, а пересекаются случайным образом.
Функция, выполняемая колонками глазодоминантности, пока остается тайной. Мы знаем, что нейроны со всеми градациями предпочтения глаза имеются по всей бинокулярной части поля зрения, и возможно, что некоторая регулярная упорядоченная система конвергенции входов гарантирует однородность распределения, благодаря чему ни один глаз не окажется случайно выделенным ни в одном месте. Зачем нужны повсеместно все эти градации предпочтения глаза, само по себе неясно; мы можем только догадываться, что это имеет какое-то отношение к восприятию глубины.
Если собрать вместе все, что стало известно о первичной зрительной коре, будет ясно, что элементарным участком коры нужно считать блок площадью примерно в квадратный миллиметр и глубиной два миллиметра. Знать организацию такого кусочка ткани — это значит знать организацию всего поля 17; целое должно быть в значительной степени простым повторением этой элементарной единицы. Конечно, данную элементарную единицу не следует рассматривать как отдельный изолированный блок. С чего начинать отсчет ориентационных колонок — с колонки, представляющей вертикальную ориентацию, или наклонную или горизонтальную, – совершенно безразлично; точно так же все равно, с какой пары начинать последовательность полос глазодоминантности: левый глаз – правый глаз или правый глаз – левый глаз. Это же справедливо для любой ячейки кристалла хлористого натрия и для любого сложного повторяющегося узора типа тех, какие печатают на обоях.