Бинокулярные клетки могут возбуждаться как каждым глазом независимо, так и более сильно – двумя глазами вместе. Здесь представлены относящиеся к левому и правому глазам рецептивные поля сложной клетки, контролирующей область в верхнем левом квадранте поля зрения. (Оси координат соответствуют горизонтальному и вертикальному меридианам поля, пересекающимся в точке фиксации.) Два данных рецептивных поля идентичны, но сила реакции может зависеть от того, какой глаз стимулируется: правый или левый. Глаз, оказывающий более сильное влияние, называется доминантным.
Из этого наблюдения следует предположение о способе, с помощью которого кора решает такую фундаментальную проблему: как сделать, чтобы зрительная картина анализировалась детально в центральной части и намного грубее на периферии. В сетчатке, перед которой стоит такая же проблема, по очевидным оптическим причинам число миллиметров, соответствующих градусу поля зрения, постоянно. Сетчатка обрабатывает центральные участки более детально благодаря тому, что имеет огромное количество ганглиозных клеток, каждая из которых обслуживает крошечную область в центре поля зрения; слой ганглиозных клеток в центральной части сетчатки относительно толст, тогда как в периферических частях сетчатки он очень тонок. В то же время, было, по-видимому, желательно, чтобы кора везде имела одинаковую толщину. Здесь нет никаких оптических ограничений типа накладываемых на сетчатку, и потому площади просто распределяются в соответствии с проблемами, которые должны решаться.
На каждом квадратном миллиметре коры предположительно действуют примерно такие же механизмы, как на любом другом. Несколько тысяч волокон из коленчатого тела входит в такую функциональную ячейку коры, и что-то около 50000 волокон выходит из нее, независимо от того, представлена ли здесь малая часть зрительного мира очень детально или большая по размеру часть соответственно менее детально. Как мы указывали вначале, предположение об однородности коры возникает при взгляде на окрашенные срезы. Оно убедительно подтверждается, когда мы исследуем архитектонику дальше, специально обращая внимание на чувствительность к ориентации или на доминирование глаз.
В физиологических исследованиях была выявлена группировка клеток в соответствии с доминированием глаз. При некотором произвольном погружении в кору под прямым углом к поверхности (1) микроэлектрод может встретить только клетки, которые оказывают предпочтение левому глазу (Lr), а в слое IV – клетки, которые возбуждаются только левым глазом (L); при другом вертикальном погружении (2) для всех клеток доминантным будет правый глаз (R,), а в слое IV клетки будут возбуждаться исключительно правым глазом (R). При наклонном погружении будет наблюдаться регулярное чередование доминирования глаз. Результаты многократных погружений наводят на мысль, что кора подразделена на области с поперечным сечением шириной около 0,4 мм и со стенками, перпендикулярными поверхности и слоям коры – колонки глазодоминантности.
Относительно ориентации мы исследовали группировки клеток точно так же, как это мы делали при рассмотрении локализации полей, т. е. сначала изучали пары клеток, расположенных в непосредственной близости друг от друга. Две такие клетки почти всегда имеют одинаковые оптимальные ориентации стимулов. Если электрод вводится в направлении, перпендикулярном к поверхности, все клетки вдоль пути его проникновения имеют одинаковые или почти одинаковые предпочтительные ориентации (кроме клеток в глубине слоя IV, которые совсем не имеют оптимальных ориентации). Однако при двух погружениях перпендикулярно поверхности, произведенных на расстоянии в один миллиметр или около того, обнаруженные две ориентации, как правило, различны. Следовательно, кора должна подразделяться на какие-то вертикальные ячейки, внутри которых оптимальная ориентация одинакова для рецептивных полей всех клеток. Когда мы натолкнулись на эту систему почти 20 лет назад, она заинтриговала нас, поскольку она так хорошо соответствовала иерархическим схемам, предложенным нами для объяснения того, каким образом сложные клетки снабжаются входными сигналами от простых: эти схемы включали связи с клетками, поля которых покрывают одну и ту же часть поля зрения и которые реагируют на одну и ту же ориентацию линий. Казалось совершенно разумным, что прочно взаимосвязанные клетки должны быть сгруппированы вместе.
Если кора разбита на области с постоянной для рецептивных полей оптимальной ориентацией, можно ли сказать что-нибудь большее о трехмерной форме этих областей, кроме того, что их стенки перпендикулярны поверхности? Соотносятся ли соседние области сколько-нибудь систематическим образом, или обслуживающие всевозможные направления колонки разбросаны по коре случайно? Мы начали изучать ни вопросы, просто вводя электрод в кору наклонно или параллельно поверхности. Когда мы первый раз поставили такой эксперимент в 1961 г., результат был столь удивителен, что мы с трудом в него поверили. Вместо случайного набора сменяющихся ориентации наблюдалась изумительная упорядоченность. Каждый раз, когда микроэлектрод продвигался всего на 25-50 мкм (тысячных долей миллиметра), оптимальная ориентация менялась небольшим скачком, в среднем примерно на 10°; скачки в одном направлении – по часовой стрелке или против нее – продолжали наблюдаться в довольно большом диапазоне углов, что-то от 90 до 270°.
С тех пор как было сделано это первое наблюдение, мы находим аналогичную упорядоченность почти у каждой обезьяны. Либо стабильно регистрируется поворот ориентации, либо, реже, встречаются участки, в пределах которых ориентация остается постоянной. Последовательные изменения ориентации достаточно малы, поэтому трудно быть уверенным в том, что области постоянной ориентации имеют конечные размеры; возможно, что по мере продвижения электрода вдоль коры оптимальные направления меняются в каком-то смысле непрерывно.
У нас все больше нарастал интерес к трехмерной форме этих подобластей. Уже из рассмотрения одной геометрии очевидна возможность существования малых или нулевых изменений в любом направлении при горизонтальном или тангенциальном проникновении к параллельным слоям ткани, содержащим клетки со сходной специфичностью, и таким, что каждый слой перпендикулярен поверхности. Слои не обязательно должны быть плоскими как ломти хлеба; при взгляде сверху некоторые из них имеют вид завихрений, с помощью которых легко объяснить инверсии в направлении поворота ориентации. Запись от множества клеток по ходу нескольких параллельных погружений электрода, по-видимому, подтверждает такое предположение, однако с помощью микроэлектрода мы могли исследовать не более чем крошечный участок мозга.