Такие системы представляют собой элементарные единицы мозговой деятельности. Изучение простых животных, например крупного брюхоногого моллюска аплизии, показывает, что Малые системы нейронов способны к некоторым формам обучения и памяти
По убеждению многих нейробиологов в конце концов будет доказано, что уникальные свойства каждого человека — способность чувствовать, думать, обучаться и помнить — заключены в строго организованных сетях синаптических взаимосвязей между нейронами головного мозга. Поскольку в человеческом мозгу исследовать эти сети трудно, важная задача нейробиологии состояла в том, чтобы создать на животных модели, пригодные для изучения того, как взаимодействующие системы нейронов формируют поведение. Нейронные сети, осуществляющие завершенные поведенческие акты, позволяют исследовать иерархию взаимосвязанных вопросов. В какой мере варьируют свойства разных нейронов? Чем определяется организация взаимосвязей между нейронами? Как разная организация взаимосвязей создает разные формы поведения? Может ли обучение модифицировать взаимосвязанные нейроны, управляющие определенным видом поведения, а если может, то посредством каких механизмов происходит запоминание?
Среди многих функций, осуществляемых благодаря взаимодействию нейронов, самые интересные те, которые связаны с обучением (способностью изменять поведение под влиянием опыта) и с памятью (способностью сохранять эти изменения в течение некоторого времени). Обучение и память — это, пожалуй, наиболее отличительные черты умственной деятельности высших животных, достигающие наивысшей формы у человека. В самом деле, человек является тем, чем он есть, в значительной мере благодаря тому, чему он обучился. Поэтому чтобы понять обучение и изучить эволюцию поведения, теоретически важно определить, на каком филогенетическом уровне нейронной и поведенческой организации можно распознать начальные проявления процессов обучения и памяти, характерных для человеческого поведения. Такое определение важно также для практики. Исследовать клеточные механизмы памяти в мозгу человека или других млекопитающих трудно потому, что у них мозг невероятно сложен. Кроме того, таким исследованиям на мозге человека препятствуют этические соображения. Поэтому для науки важно было бы эффективно исследовать эти процессы в простых системах.
Группа нейронов на микрофотографии дорсальной поверхности абдоминального ганглия морского моллюска аплизии. Справа виден особенно крупный более темный нейрон. На карте абдоминального ганглия аплизии эта клетка идентифицирована как нейрон R2.
Могут возразить, что нельзя успешно изучать память и обучение человека на простых нейронных системах. Организация человеческого мозга представляется столь сложной, что попытка изучить обучение человека в упрощенной форме на простых системах обречена на неудачу. Человек обладает интеллектом, весьма развитой речью и абстрактным мышлением, которых нет у низших животных и которые, возможно, требуют качественно иных типов нейронной организации. Хотя такие возражения существенны, решающим не является вопрос о том, есть ли нечто специфическое в человеческом мозгу. Несомненно, есть. Но вопрос скорее состоит в том, есть ли у человеческого мозга и человеческого поведения что-нибудь общее с мозгом и поведением низших животных. Там, где есть элементы сходства, они могут свидетельствовать об общих принципах организации мозга, которые доступны успешному изучению в простых нервных системах.
Ответ на вопрос о сходстве очевиден. Этологи К. Лоренц (К. Lorenz), H. Тинберген (N. Tinbergen) и К. Фриш (К. von Frisch) показали, что у людей с низшими животными много общих форм поведения, в том числе элементарное восприятие и координация движений. В особенности широко распространена способность к обучению; она развилась у многих беспозвоночных и у всех позвоночных. Сходство некоторых процессов обучения позволяет думать, что нейронные механизмы данного процесса могут обладать общими свойствами на всем протяжении филогенеза. Например, нет, по-видимому, принципиальной разницы в структуре, химизме или функции между нейронами и синапсами у человека, кальмара, улитки и пиявки. Следовательно, полный и тщательный анализ обучения у такого беспозвоночного, вероятно, способен выявить механизмы, имеющие общее значение.
Примитивные беспозвоночные привлекательны для таких исследований тем, что их нервная система содержит от 10000 до 100000 клеток в отличие от многих миллиардов у более сложных животных. Клетки собраны в отдельные группы, называемые ганглиями, и каждый ганглий обычно содержит от 500 до 1500 нейронов. Такое количественное упрощение позволило связать функцию отдельных нейронов непосредственно с поведением. В результате получен ряд важных фактов, которые приводят к новым представлениям о связи между мозгом и поведением.
Первый важный вопрос, который следует рассмотреть исследователям простых нейронных систем, состоит в том, отличны ли друг от друга разные нейроны одной области. Этот вопрос — центральный для понимания того, как поведение осуществляется нервной системой, был до последнего времени предметом обсуждения. Некоторые нейробиологи считали, что по своим свойствам нейроны мозга достаточно сходны, чтобы можно было считать их идентичными элементами, связи между которыми обладают приблизительно одинаковым весом.
Против этого теперь выдвигаются веские возражения, особенно на основании изучения беспозвоночных, показавшего, что многие нейроны доступны индивидуальной идентификации и инвариантны у каждого члена вида. Представление об индивидуальных свойствах нейронов предложено еще в 1912 г. немецким биологом Р. Гольдшмидтом (R. Goldschmidt) на основании исследования нервной системы у примитивного червя, кишечного паразита аскариды. Мозг этого червя состоит из нескольких ганглиев. Изучая эти ганглии, Гольдшмидт обнаружил, что они содержат точно 162 клетки. Число это никогда не варьировало от животного к животному, и каждая клетка всегда занимала свое характерное положение. Несмотря на такие четкие результаты, работа Гольдшмидта осталась практически незамеченной.