- BrainTools - https://www.braintools.ru -
У меня есть компьютер. Думаю, у вас тоже. Общий перечень наших с вами задач, решаемых с помощью компьютера, можно свести к двум основополагающим вещам: хранение и преобразование информации. Головной мозг выполняет схожие функции. Например, фоторецепторные клетки в глазах принимают электромагнитное излучение и преобразуют его в нервный импульс. Мозг обрабатывает эту информацию и на основе нее строит изображение. Помимо функционального сходства, мозг и компьютер имеют и общие структурные черты: у нас тоже есть некоторое подобие процессора и памяти [1]. Причем наша память, как и память компьютера, бывает разных видов. В этой статье пойдет речь о нашем аналоге оперативной памяти и о том, как он работает.
Как работает наш мозг? На столь обширный вопрос есть несколько философский ответ — недостаточно хорошо. Действительно, вы наверняка хотели бы не вспоминать перед сном [2] все свои неудачи и просчеты или не забывать, куда положили ключи. Переформулируем и сузим вопрос: как человеческий мозг воспринимает и использует информацию?
Информация попадает в наш мозг посредством нервных импульсов, источником которых являются органы чувств [3]. Именно они первыми получают информацию, а также и преобразовывают её в соответствующий импульс. Зрение преобразовывает электромагнитное излучение видимого спектра, осязание [4] — физическое взаимодействие (температура, вибрации, прикосновения и т. п.), слух — механические колебания в среде, обоняние и вкус — воздействие различных веществ на рецепторы [5]. Помимо основных пяти видов чувств, не стоит забывать о вестибулярном аппарате, который отвечает за положение тела в пространстве и направления движения.
Источник –prostudio.ru [6]
Попадая в мозг, нервные импульсы преобразуются в соответствующие образы и чувства. Но на данный момент эти образы всего лишь образы. Если человек не умеет читать, то для его мозга текст будет лишь набором закорючек. В психологии есть термин когнитивность [7]. Он отражает способность человека к умственному восприятию и переработке внешней информацию сквозь собственную систему взглядов, зависящую от мышления, памяти, обучения и т. д. Коротко говоря, мозг в течение жизни обучается, получает новую информацию и, в зависимости от текущего типа мышления, багажа знаний и умений, обрабатывает получаемую информацию соответствующим образом.
Память можно определить как способность мозга сохранять и восстанавливать информацию. Очевидно, что работа мозга очень сильно зависит от памяти и ее роль сложно переоценить. Классифицировать память можно по разным критериям. Но нас будет интересовать конкретно разделение по времени хранения информации. Итак, память мозга условно можно разделить на следующие виды:
Разберем конкретнее последние два типа памяти.
Изначально, информация от органов чувств попадает в кратковременную память [10]. Как понятно из названия, она хранится там небольшой промежуток времени. При этом информация от органов чувств фильтруется. В кратковременную память [11] попадает та информация, на которую мы обратили своё внимание. Причем как произвольно, так и под действием каких-либо факторов. Например, обычно мы не обращаем внимание на ощущения от надетой на нас одежды, но если она вызовет дискомфорт, то мы обратим внимание, и эта информация попадет к нам в кратковременную память. Помимо органов чувств, источником информации [12] может являться и долговременная память [13] как итог процесса вспоминания, как целенаправленного, так и спонтанного.
В целом идеи о том, что человеческая память не является единой сущностью, возникли ещё в 19 веке. Более конкретная теория взаимодействия между кратковременной и долговременной памятью появилась в середине 20-го века в множественной модели Аткинсона-Шиффрина [14].
Согласно данной модели, наша память состоит из трех структур:
Стоит понимать, что данная модель не определяет конкретные психологические структуры нашего мозга, а представляет собой гипотетическую модель, помогающую понять саму память.
Механизм перехода из кратковременной памяти в долговременную точно не ясен. При этом, способность вспоминать события из прошлого зависят от гиппокампа. К этому выводу пришли Бренда Милнер и Уильям Сковилл, изучая пациента, которому для лечения эпилепсии был удален гиппокамп. Пациент не мог вспомнить, что с ним происходило в прошлом, но при этом другие структуры памяти сохранились. Он помнил факты об устройстве мира, но новые ему выучить было сложно. Также у него отлично работала кратковременная память.
Источник –studme.org [15]
Информация без повторения хранится в кратковременной памяти на протяжении примерно 20 секунд. При этом ее объем однозначно определить очень сложно. Американский психолог Джордж Миллер в своей работе «Магическое число семь плюс-минус два [16]« определил, что человек, как правило, не может запомнить и воспроизвести больше 7±2 объектов (данная характеристика является усредненной и не отрицает существование уникумов, способных запоминать большое количество информации)
Но что такое объект? На основе своих исследований (проверка, сколько человек может запомнить), Миллер приводит следующую характеристику — человек в среднем способен запомнить девять двоичных чисел, восемь десятичных, семь букв алфавита и пять односложных слов. Информационная содержательность этих объектов не столь большая. В этом кроется и следующее различие между кратковременной и долговременной памятью — объем информации. Объектом может являться как слово, так и изображение — например, пейзаж. Но степень его детализации будет определяться объемом кратковременной памяти и вряд ли вы запомните его в деталях без повторения.
Рабочая память (РП) — это тип памяти, с помощью которого человек способен сохранять в уме информацию, с которой работает. РП также позволяет комбинировать информацию, полученную от органов восприятия, с долговременной и кратковременной памятью.
Термин «Рабочая память» был введен Джорджем Миллером, Евгением Галантером и Карлом Прибрамом в контексте теории, в которой человеческий ум сравнивался с компьютером. Изначально понятие рабочей памяти не было конкретизировано, поэтому его использовали Ричард Аткинсон и Ричард Шиффрин в своей модели кратковременной памяти. Однако они не сделали акцента на ее функциональной части, поэтому Алан Бэддели и Грэм Хитч переработали их модель. Главное отличие нового взгляда на РП заключалось в том, что кратковременная память может быть разделена на субкомпоненты и что такая система способна на сложные когнитивные действия. На данный момент многие ученые используют концепцию РП в качестве замены или расширения концепции краткосрочной памяти, делая акцент на манипулировании информацией, а не на ее простом хранении.
В 1974 году Алан Бэддели и Грэм Хитч предложили многокомпонентную модель РП, переработав модель кратковременной памяти Аткинсона-Шиффрина. Изначально модель содержала три компонента. Первый компонент — это система контроля над вниманием, называемая центральным исполнителем (ЦИ). ЦИ направляет внимание на информацию, подавляя отвлечение (на нерелевантную информацию и неподходящие действия) и координируя когнитивные процессы при одновременном выполнении множества задач. У ЦИ «в подчинении» находятся две системы временного хранения: фонологическая петля и визуально-пространственный блокнот.
Фонологическая петля — это когнитивная система временного хранения, которая может хранить информацию, представленную в речевой и звуковой форме, с помощью проговаривания про себя (субвокальные повторения). Одним из доказательств этого служит эффект фонологического сходства [17]: слова, со сходным звучанием, запоминаются труднее, чем слова, звучащие по-разному. Представим, что вы хотите запомнить набор терминов. Если слова схожи по звучанию, то это приведет к путанице и плохому результату. Попробуйте запомнить два ряда слов: «код», «год», «кот», «рот» и «солнце», «горячий», «корова», «день». Скорее всего, «производительность» запоминания в первом случае будет хуже. Фонологической петле совсем не важны значения, поэтому человек запоминает ряд из нескольких слов, обозначающих одно и тоже, так же, как и разные слова. В этом заключается отличие рабочей памяти от долговременной. Если увеличить количество слов в последовательности, например до 10, и дать людям запомнить их, то звучание уйдет на второй план, а значение станет намного важней. Таким образом у человека имеется система, которая может хранить информацию путем проговаривания про себя. Она не важна для понимания речи (если вы способны нормально говорить и слышать), однако играет существенную роль в пополнении словарного запаса на раннем этапе обучения чтению, когда нужно удержать в памяти последовательность звуков в точном порядке.
Визуально-пространственный блокнот — это когнитивная система, одновременно хранящая пространственную и визуальную информацию. Визуальная информация включает в себя такие вещи, как цвет и форма, а пространственная — данные о местоположении. Например, использование карты или проектирование здания включает пространственную информацию. Изучение иероглифов, запоминание цвета — это больше визуальное задание. Системы вербальной, пространственной и визуальной информации могут поддерживаться потоками информации, не охватываемыми подчиненными системами (например, тактильные ощущения, семантическая информация, музыкальная информация, эмоциональная составляющая и т. п.).
Так как речь идет о серии потоков восприятия, в 2000 году Бэддели расширил модель, добавив четвертую систему — эпизодический буфер, в котором потоки информации объединяются. У буфера есть несколько измерений: визуальное, пространственное семантическое и перцептивное. Он объединяет их вместе и делает доступными сознанию, связывая всю информацию РП в единое эпизодическое представление. Таким образом эпизодический буфер — это связующие звено между рабочей и долговременной памятью. Если проводить аналогии, то эпизодический буфер чем-то напоминает экран, на который проецируются события.
РП располагается в нескольких частях мозга. С появлением методов визуализации мозга (ПЭТ [18] и фМРТ [19]) определение локализации функций в головном мозге людей значительно упростилось. Обзор многочисленных исследований [20] показывает, что области активации во время задач рабочей памяти, разбросаны по большой части коры. Определение Фонологическая петля расположена главным образом в области между височной и теменной долями левого полушария. Процесс повторения информации по большей части включает лобную область, известную как центр Брока [21].
Визуально-пространственная система вовлекает в основном правое полушарие, однако она может простираться и до затылочных долей, в направлении к задней части мозга. Эта область задействуется в визуальных изображениях. Более центральные теменные области ответственны за пространственную информацию.
Сам факт активации каких-то областей мозга вовсе не означает, что именно там хранится информация. В этом заключается одна из проблем использования функциональной визуализации для понимания работы памяти. При изучении какой-либо когнитивной задачи ученые наблюдают активность области, но не знают, действительно ли она необходима для нее. Представьте, что вы обращается к информации в памяти компьютера и получаете её на экране. Вы узнаете, что было в хранилище и какие подсистемы были задействованы для отображения информации. Но где конкретно хранилась информация и как она была извлечена вам не известно. Пока что в научном сообществе нет консенсуса о том, как точно устроена и функционирует память.
РП страдает от интенсивного стресса [22]. Это было обнаружено в исследованиях [23]Арнстена и его коллег на разных видах животных. Например, в одном из исследований [24] Арнстен исследует влияние стресса [25], вызванного шумом, на когнитивные функции префронтальной коры у резус-макак. Экспериментаторы заполняли едой одну из лунок, а затем накрывали их непрозрачным экраном. Через определенные промежутки времени экран убирали, и макаки выбирали одну из лунок (задача с отложенным ответом). После некоторой серии экспериментов подопытных подвергали воздействию непрерывным громким шумом (100-110 Дб) в течении 30 минут перед тестированием. Испытав стресс, животные хуже справлялись с заданием: чаще забывали, в какой лунке находятся лакомства. В ходе исследований выяснилось, что высвобождение физиологически активных веществ, катехоламинов [26], в префронтальную кору, вызванное стрессом, снижает срабатывание нейронов и емкость памяти. Воздействие хронического стресса может привести к глубоким нарушениями РП. Чем больше стресса в жизни, тем ниже эффективность РП при выполнении простых познавательных задач. Злоупотребление алкоголем также может вызывать нарушения РП из-за повреждения мозга.
Индивидуальные различия в объеме РП в некоторой степени наследуемы. Пока что мало известно о том, какие гены связаны с функционированием РП. В рамках многокомпонентной модели был предложен [27] один ген-кандидат, ROBO1 для гипотетической фонологической петли рабочей памяти. Генетический компонент РП в значительной степени разделяется с таковым [28] для подвижного интеллекта [29], поэтому исследования связи памяти и генетики возможно поможет также лучше понять работу интеллекта.
Существует несколько гипотез о том, что РП может быть натренирована, например при помощи специальных компьютерных программ или таких задач, как n-назад [30]. Но при этом люди не демонстрируют значительных улучшений в таких активностях, как обучение математике [31], чтение или выполнение тестов на уровень интеллекта. Если тренировка рабочей памятью интеллекта работает, то скорее всего эффект будет незначительным.
Текущие развитие процессоров во многом основывается на уменьшении техпроцесса. Время идет и эффективность такого подхода снижается. Возможно ли замена нынешней архитектуры на архитектуру, схожую с мозгом человека? Конечно, в реалиях недостатка знаний о мозге данное сравнение некорректно, но давайте пофантазируем. В чем преимущества мозга перед компьютером? Первое, что приходит на ум — это наличие сознания и способность к творческой деятельности. Но не совсем понятно, в чем разница между ними и их компьютерной симуляцией? Проблему квалиа и подобные вопросы лучше оставить философам и сконцентрироваться на более практических аспектах. Понятно, что в некоторых задачах, зависящих от скорости обработки информации мы проигрываем. Но при этом у мозга множество преимуществ перед современными компьютерами:
Некоторые преимущества человеческого мозга перед компьютерами довольно очевидны. В свете этих преимуществ, разработка систем, схожих с мозгом, выглядит отличной идеей. Но, как всегда, у этого подхода есть недостатки:
Природные «технологии» естественным образом образуются под влиянием эволюции. Но, зачастую, такие решения не подходят под задачи человека. Так, например, попытки создания летательного средства на основе пернатых и их техники полета ничем удачным не отличались.
Во-первых, мозг — это не идеальная система. Мы не можем целенаправленно забыть определенную информацию. Мозгу очень сложно выполнять несколько сложных задач одновременно. Во-вторых, каждый мозг уникален. Кто-то лучше рисует, а кто-то лучше справляется с математическими задачи. Нужен ли компьютер, который справляется с задачами примерно одной сложности за разное время?
Спустимся с небес на землю. Если представить создание компьютеров с архитектурой, схожей с устройством мозга, то сразу появятся тысячи нюансов. Как управлять такой системой, как ее поддерживать, создавать для нее софт, как интегрировать ее с другими системами, из каких материалов делать компоненты и многое другое.
Практика показывает, что лучше заимствовать лучшее, но, как упоминалось выше, недостаток знаний о мозге не позволяет сделать этого.
Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!
Автор: owlofmacloud
Источник [35]
Сайт-источник BrainTools: https://www.braintools.ru
Путь до страницы источника: https://www.braintools.ru/article/10925
URLs in this post:
[1] памяти: http://www.braintools.ru/article/4140
[2] сном: http://www.braintools.ru/article/9809
[3] органы чувств: http://www.braintools.ru/article/9438
[4] осязание: http://www.braintools.ru/article/1505
[5] рецепторы: http://www.braintools.ru/article/9580
[6] prostudio.ru: https://prostudio.ru/journal/sense-organ/
[7] когнитивность: https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B3%D0%BD%D0%B8%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0
[8] Долговременная память: http://www.braintools.ru/article/9500
[9] Кратковременная память: http://www.braintools.ru/article/9493
[10] кратковременную память: http://www.braintools.ru/article/9285
[11] кратковременную память: http://www.braintools.ru/article/4150
[12] источником информации: http://www.braintools.ru/article/8616
[13] долговременная память: http://www.braintools.ru/article/9289
[14] множественной модели Аткинсона-Шиффрина: https://cogs.sitehost.iu.edu/FestschriftForRichShiffrin/pubs/1968%20Human%20Memory.%20Atkinson,%20Shiffrin.pdf
[15] studme.org: https://studme.org/120956/psihologiya/struktura_pamyati_sensornaya_kratkovremennaya_pamyat
[16] Магическое число семь плюс-минус два: http://www2.psych.utoronto.ca/users/peterson/psy430s2001/Miller%20GA%20Magical%20Seven%20Psych%20Review%201955.pdf
[17] эффект фонологического сходства: https://link.springer.com/article/10.3758/s13421-016-0609-8
[18] ПЭТ: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B7%D0%B8%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%BE-%D1%8D%D0%BC%D0%B8%D1%81%D1%81%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D0%BC%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F
[19] фМРТ: https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE-%D1%80%D0%B5%D0%B7%D0%BE%D0%BD%D0%B0%D0%BD%D1%81%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D0%BC%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F
[20] Обзор многочисленных исследований: https://science.sciencemag.org/content/sci/283/5408/1657.full.pdf?casa_token=smtuPMtGHbsAAAAA:FA7cvOSrt8aAUEAhQX2Hflgs12IkaCxsZmPDyqvjrd_5vLTQ7-RzN4I-92AI3-PXjRrQjEtxW8jLrnE
[21] центр Брока: https://ru.wikipedia.org/wiki/%D0%A6%D0%B5%D0%BD%D1%82%D1%80_%D0%91%D1%80%D0%BE%D0%BA%D0%B0
[22] стресса: http://www.braintools.ru/article/9548
[23] исследованиях : https://science.sciencemag.org/content/280/5370/1711.full?casa_token=JCQf-M1aXioAAAAA:fTJUvLqNERQW7UUwN6wAidfh7c-G-PJ-aZ3qQdVq7oTnauoLcvAEqVw4NjTYBHWoKwwN0xQo6-yex28#ref-9
[24] в одном из исследований: https://jamanetwork.com/journals/jamapsychiatry/article-abstract/1150004
[25] стресса: http://www.braintools.ru/article/9041
[26] катехоламинов: https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D1%85%D0%BE%D0%BB%D0%B0%D0%BC%D0%B8%D0%BD%D1%8B
[27] был предложен: https://www.researchgate.net/publication/47430811_Genetic_Variance_in_a_Component_of_the_Language_Acquisition_Device_ROBO1_Polymorphisms_Associated_with_Phonological_Buffer_Deficits
[28] разделяется с таковым: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001920/
[29] подвижного интеллекта: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D1%8B%D0%B9_%D0%B8_%D0%BA%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB%D0%B8%D0%B7%D0%BE%D0%B2%D0%B0%D0%B2%D1%88%D0%B8%D0%B9%D1%81%D1%8F_%D0%B8%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82
[30] n-назад: https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_n-%D0%BD%D0%B0%D0%B7%D0%B0%D0%B4
[31] математике: http://www.braintools.ru/article/7620
[32] опыта: http://www.braintools.ru/article/6952
[33] Маклауд: https://macloud.ru/?partner=4189mjxpzx
[34] Image: https://macloud.ru/?partner=4189mjxpzx&utm_source=habr&utm_medium=original&utm_campaign=stepa
[35] Источник: https://habr.com/ru/companies/macloud/articles/561526/?utm_source=habrahabr&utm_medium=rss&utm_campaign=561526
Нажмите здесь для печати.