Трудности, возникшие при попытках создания «искусственного интеллекта», как в области использования математических методов, так и в области эвристического программирования, привели группу советских исследователей к мысли о необходимости пересмотра основных путей исследования. Сформулированная новая программа вначале была определена как программа «ситуационного управления», или «семиотическое моделирование».
Мышление человека тесно связано с использованием слов, абстрактных понятий. Проблема моделирования процесса смыслового понимания текста при работе вычислительных машин не может быть решена только на основе использования математики или построения эвристических программ общего типа. Необходимо широкое введение в структуру моделей понятий, слов.
Такая формулировка проблемы указывала на сходство нового направления с ранее уже осуществленными попытками в области построения частных эвристических программ. Это привело некоторых исследователей к выводу о том, что данный метод не позволит избавиться от ошибок «детского периода развития эвристического программирования». Однако семиотические программы имели и существенное отличие. Дело в том, что исследователи не воспроизводили в программах всех ранее выработанных у человека систем осмысленных понятий, они пытались положить в основу работы моделей искусственного интеллекта ограниченный список простых «базовых понятий», конструкций, предоставляя решать задачу формирования более сложных положений и оперирования ими самим вычислительным машинам, реализующим семиотические программы поведения. Работы в этом направлении оказались перспективными, они привели к практическому результату. Например, создание программ, позволивших оптимизировать работу порта, находить решение задач прохождения судов по шлюзам, дало положительные результаты и в целом ряде других областей.
При развитии этого направления ведущее значение приобрела проблема построения моделей «системы знания» человека. Казалось, что при создании «искусственного интеллекта» достаточно представить в форме «банка данных» все сведения и термины, используемые специалистами в той или иной области, создать специальную систему управления комплексом фиксированных знаний и обеспечить возможность логического вывода. Такие системы по замыслу их создателей должны были позволить специалистам общаться с вычислительной машиной на привычном для них языке, они могли оказать существенную помощь в принятии решений.
Опираясь на достижения в этой области кибернетики, некоторые исследователи полагали, что современная наука уже близка к решению задачи построения искусственного интеллекта. При этом они опирались на определение одного из основоположников кибернетику английского ученого Тьюринга. Пытаясь определить понятие «интеллектуальной деятельно-сти», которое, вообще говоря, является достаточно сложным и не допускает простого формального истолкования, Тьюринг прибегнул к несколько своеобразному приему. Он обрисовал ситуацию, в которой человек ведет диалог с машиной, и указал, что если человек, который ведет беседу по определенной проблеме, в течение длительного периода времени не находит различия между тем, разговаривает ли он с человеком или с машиной, то это достаточно убедительное доказательство того, что имеет место построение хорошей модели «искусственного интеллекта». Некоторые исследователи в области кибернетики считают, что на основе использования современных достижений науки можно создать машины, которые будут удовлетворять описанным критериям Тьюринга. Специалист, беседуя с такой машиной, может получать достаточно разумные ответы на свои вопросы. Он может даже прийти к выводу, что его собеседник — специалист того же профиля.
Такие выводы могут показаться убедительными. Однако в действительности возникают серьезные возражения. Дело в том, что диалог специалистов друг с другом представляет собой один из простых видов умственной деятельности. Б этих условиях используется достаточно ограниченный круг известных обоим собеседникам технических терминов и понятий. При этом не реализуются более сложные формы мышления, не возникает работа более совершенных информационных механизмов, которые лежат в основе выработки новых абстрактных понятий, создания новых представлений, отыскания принципиально новых решений и т. д. Информационная деятельность вращается вокруг известных проблем и известных понятий, которые сформулированы в виде, определенных систем представлений с ограниченным количеством вариантов преобразования элементов. Следовательно, «критерии Тьюринга» вряд ли можно считать удовлетворительными.
Создание семиотических программ и построение моделей «системы знаний» представляет собой существенное достижение современной кибернетики. Однако оно не привело к преодолению трудностей, которые возникали и на первом этапе развития эвристического программирования. Семиотические программы закрепляли те понятия, формы мышления, те алгоритмы, которые были уже выработаны у человека в прошлом. Таким образом, хотя они и позволяли имитировать определенные виды умственной деятельности, но не могли стать базой построения новых алгоритмов. Например, программа, которая моделирует деятельность конструктора, не могла обеспечить возможностей отыскания принципиально новых методов конструирования, коренного усовершенствования этого процесса, она повторяла только то, что человек уже делал ранее.
Перед наукой и техникой возникали задачи иного типа. Методы конструирования и проектирования были созданы в прошлом, когда человек не мог опираться на помощь вычислительных машин и сами объекты конструирования были достаточно простыми. Именно в этих условиях выработались определенные понятия. Приемы проектирования и конструирования были представлены в виде специальных учебных пособий, инструкций, передаваемых одним специалистом другому.